论文部分内容阅读
在暴雨天气情况下,驾驶人视野受限制容易引发交通事故。为准确预测暴雨天气下的高速公路车流量从而减少事故的发生,提出一种基于改进布谷鸟搜索(CS)算法与径向基函数(RBF)神经网络的高速公路交通流预测方法。采用猴群算法中的猴爬山过程优化布谷鸟位置更新策略,通过识别概率自适应更新策略建立改进的CS-RBF神经网络(CS-RBFNN)交通流预测模型。实验结果表明,相对于改进的GSO-RBFNN模型,改进的CS-RBFNN模型具有更快的收敛速度和更高的预测精度,其平均绝对百分比误差为8.2%,平均绝对误差为20.1