基于对抗和迁移学习的灾害天气卫星云图分类

来源 :北京航空航天大学学报 | 被引量 : 0次 | 上传用户:qw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对卫星云图中的灾害天气数据存在严重不平衡问题,提出一个结合生成对抗学习(GAN)和迁移学习(TL)的卷积神经网络(CNN)框架以解决上述问题进而提高基于卫星云图的灾害天气分类精度。该框架主要包含基于GAN的数据均衡化模块和基于迁移学习的CNN分类模块。上述2个模块分别从数据和算法层面解决数据的类间不平衡问题,分别得到一个相对均衡的数据集和一个可在不同类别数据上提取相对均衡特征的分类模型,最终实现对卫星云图的分类,提高其中灾害天气的卫星云图类别分类准确率。与此同时所提方法在自建的大规模卫星云图数据上
其他文献
在煤化工企业规模不断扩大,并且在市场环境中占据重要发展地位的背景下,关于废水的排量逐渐增多,考虑到环保问题,如何优化废水处理技术是目前社会的热点问题.下面主要针对在