论文部分内容阅读
针对混合属性数据聚类难度高的问题,提出一种基于广义线性模型的混合属性数据聚类方法。首先,构建低阶多元广义线性模型处理海量数据聚类问题,考虑数据属性的时间特性,获取属性时间序列矩阵;然后,基于优化K-prototypes聚类方法处理混合属性数据时,考虑属性的时间序列矩阵;最后,在考虑样本同聚类中心距离基础上兼顾已知样本信息内容,采用优化方法计算数据相异度、样本与聚类集间距离,当聚类结果趋于平稳时终止运算,输出聚类结果。为验证基于广义线性模型的混合属性数据聚类方法的有效性展开实验分析。结果显示,该方法经过较少