论文部分内容阅读
针对出租车盲目寻客导致空载率高的问题,提出了一种出租车载客热点推荐策略,以最大程度优化匹配乘客过程,提高寻客效率。基于出租车历史轨迹数据,结合热点乘客信息的时间序列特性,提出基于循环神经网络的分段预测(SPBR)算法,以及基于分时马尔可夫决策过程(TMDP)的载客推荐模型。实验表明,SPBR算法预测结果的RMSE比SVR、CART和BPNN等算法分别降低了67.6%、71.1%和64.5%;TMDP模型出租车期望回报比历史期望提升了35.9%。