论文部分内容阅读
现有中国画分类大多只考虑了画作和类标签的相关性,忽略了画作间的关联以及特征重要度的影响.为此,提出改进的嵌入式中国画分类算法.通过微调预训练的VGG-F模型提取中国画图像特征;并提出基于互信息的嵌入式学习算法,使"友情则近,敌对则远"的嵌入式原则受到特征选择及特征重要度的影响;最后利用支持向量机对中国画进行画作艺术风格及其作者分类.实现了对样本库中10位画家中国画的识别,平均准确率为86%,相比其他算法,该算法有更高的分类准确度和更好的鲁棒性.