论文部分内容阅读
及时辨识突水水源是有效预防和控制矿井突水灾害的重要工作之一。基于河南焦作某矿区不同水层的测试样本,利用嵌入梯度的支持向量机(SVM)对常用的[SO4]2-、K+、Mg2+、Na+、Ca2+、Cl-、[HCO3]-、F-8种水化学成分进行因子约简,确定以K+、Mg2+、Ca2+、Cl-、[HCO3]-、F-作为矿井突水水源辨识的主要判别因子。运用遗传算法优化BP神经网络(GA-BP)对新体系下的30组学习样本进行训练拟合,用所建立的分析模型对10组待检验水源类别进行辨识,预测平均正确率达到了94.27%。研