论文部分内容阅读
小麦受到条锈病菌侵染后,作物的光合能力及色素含量等均会发生变化,日光诱导叶绿素荧光(solar-inducedchlorophyll fluorescence,SIF)对作物光合生理的变化比较敏感,而反射率光谱则受作物生化参数的影响较大,为了提高小麦条锈病的遥感探测精度,该文利用随机森林(random forest,RF)等机器学习算法开展了协同冠层 SIF 和反射率微分光谱指数的小麦条锈病病情严重度的遥感探测研究。首先利用 3FLD(three bands fraunhofer line discrim