论文部分内容阅读
Support Vector Machines(SVM) is a powerful machine learning method developed from statistical learning theory and is currently an active field in artificial intelligent technology. SVM is sensitive to noise vectors near hyperplane since it is determined only by few support vectors. In this paper, Multi SVM decision model(MSDM) was proposed. MSDM consists of multiple SVMs and makes decision by synthetic information based on multi SVMs. MSDM is applied to heart disease diagnoses based on UCI benchmark data set. MSDM somewhat inproves the robust of decision system.
Support Vector Machines (SVM) is a powerful machine learning method developed from statistical learning theory and is currently an active field in artificial intelligent technology. SVM is sensitive to noise vectors near hyperplane since it is determined only by few support vectors. In this paper, MSDM consists of multiple SVMs and makes decision by synthetic information based on multi SVMs. MSDM is applied to heart disease diagnoses based on UCI benchmark data set. MSDM somewhat inproves the robust of decision system.