论文部分内容阅读
农作物病害是粮食安全的主要威胁,病害的诊断对于农业生产来说至关重要。针对单一卷积神经网络在农作物病害识别上的局限性,分类准确率不高的问题,采用多个卷积神经网络模型融合的方式,对10种农作物的27种病害及其3种病害程度的农作物叶子图片进行病害及病害程度的细粒度识别。首先选用Resnet101、RestNext50、SE-ResNet50、SE-RestNext50这4种网络模型运用迁移学习的方式,固定底层模型参数,修改顶层的全连接层进行训练,然后采用Stacking方法将模型预测结果输入第二层元学习器