论文部分内容阅读
为了提高重力辅助惯性导航系统在重力异常明显区域内的定位精度和匹配率,用模式识别神经网络的方法进行了重力匹配.在匹配时刻,根据惯导指示位置确定在一定的网格点范围内搜索载体真实位置,以每个网格点为终点把惯导指示航迹放置到重力图上,由此提取一系列的参考重力图上数据,并把它和对应网格点的位置定义成一个模式类,把所有的模式类作为概率神经网络的样本训练一个模式识别神经网络,然后把重力仪测量数据使用该神经网络识别到某个模式类,对比模式类的定义可以确定此时的载体位置.计算仿真研究表明,该算法的重力匹配率优于通常的相关匹配