卷积神经网络的多尺度改进及其在玉米病害症状识别中的应用

来源 :河南农业大学学报 | 被引量 : 0次 | 上传用户:luorui2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为解决传统卷积神经网络模型训练时间长、参数量大、泛化能力弱等问题,提出了一种基于VGG-16的改进多尺度卷积神经网络模型。用一个叠加卷积层替换VGG-16模型的最后3×3×512卷积层,并进行批归一化处理,提高模型训练速度;用全局池化层替换全连接层,大大减少模型参数总量。利用Plant Village公共数据集(健康玉米叶片、灰斑病、锈病和叶枯病叶片)结合大田试验采集的玉米病害图像数据对改进后模型进行训练和测试,并与常见的传统卷积神经网络模型进行对比。结果表明,模型参数和收敛时间均小于传统卷积神经网
其他文献
2021年6月20日,国家能源局综合司正式下发《关于报送整县(市、区)屋顶分布式光伏开发试点方案的通知》,拟在全国组织开展整县(市、区)推进屋顶分布式光伏开发试点工作,通知要求试点县(市、区)政府牵头,会同电网企业和相关投资企业,开展试点方案编制工作。
为利用高光谱遥感技术快速、无损、准确估算小麦子粒中谷氨酰胺合成酶(GS)活性,设置不同小麦品种和氮肥处理组合大田试验,以小麦花后10和20 d子粒中GS酶活性为研究对象,同时测定相应时期小麦冠层的高光谱特征,通过一阶导数、二阶导数和多元散射校正3种方法,对小麦冠层原始光谱进行预处理,分析原始光谱、一阶导数、二阶导数和多元散射校正与小麦子粒GS活性的相关性,并以此为输入,利用偏最小二乘回归、支持向量