论文部分内容阅读
为解决传统卷积神经网络模型训练时间长、参数量大、泛化能力弱等问题,提出了一种基于VGG-16的改进多尺度卷积神经网络模型。用一个叠加卷积层替换VGG-16模型的最后3×3×512卷积层,并进行批归一化处理,提高模型训练速度;用全局池化层替换全连接层,大大减少模型参数总量。利用Plant Village公共数据集(健康玉米叶片、灰斑病、锈病和叶枯病叶片)结合大田试验采集的玉米病害图像数据对改进后模型进行训练和测试,并与常见的传统卷积神经网络模型进行对比。结果表明,模型参数和收敛时间均小于传统卷积神经网