论文部分内容阅读
摘要
近年来,一类由It随机微分方程驱动的奇异随机系统因其在实际领域中的广泛应用而备受关注.然而,系统方程同时包含奇异矩阵和扩散矩阵,大大增加了分析问题的复杂性.本文首先概述了奇异It随机系统几个重要基础问题的研究进展,主要包括:系统方程解的存在条件、广义It公式、 容许性定义及稳定性问题.同时针对不同文献对上述问题的研究结果提出了自己的观点.最后对以上基础问题研究待解决的问题进行了展望.关键词
奇异It随机系统;解的存在条件;广义It公式;容许性;稳定性
中图分类号TP13
文献标志码A
0引言
1974年,英国学者Rosenbrock在研究复杂电网时,发现电网中某些部件突然失效,在失效的前后时刻有电流的瞬动现象,这种瞬间的变化不包括在常见的正常线性系统描述之中.在经历了大量的研究与试验后,他首次提出了基于电网的“奇异系统”的模型[12]
.随后,美国学者Luenberger发现经济领域中著名的动态Leontief投入产出模型也属于奇异系统,并在文献[3]中讨论了这类系统的解的存在唯一条件.至此,人们对奇异系统的研究正式拉开帷幕,并逐渐发展为现代控制理论的一大分支.随着研究的不断深入,在许多实际问题中诸如大规模系统[4]、 机械工程[5]、航空模型[6]、 网路理论[78]、受限机器人[9]等相继发现了奇异系统的广泛应用.奇异系统又被称为广义系统、描述系统、隐式系统、微分代数系统等[2,10].
从式(1)可以看出,当E
为可逆阵时,通过非奇异变换可将奇异系统转化为正常线性系统,因而可以说正常线性系统是奇异系统的特例,奇异系统是正常线性系统的推广,正是这种推广赋予了奇异系统新的独有的特性[78].比如奇异系统的解结构中,不仅包含指数解还包含脉冲解,为了保证解的适定性,所研究的奇异系统必须要满足正则性和无脉冲性的条件;奇异系统一般包括慢子系统和快子系统两部分,其中慢子系统由微分方程(连续系统)或差分方程(离散系统)来描述,而快子系统由静态的代数方程来描述;奇异系统不一定有李雅普诺夫意义下的稳定性和镇定性,因为正常线性系统一般选李雅普诺夫函数为V(x)=xT(t)Px(t),P>0是正定的,而奇异系统选的李雅普诺夫函数V(x)=xT(t)ETPx(t),ETP=PTE≥0
是不定的(针对连续系统).正是由于奇异系统的以上特点,使其研究起来比正常的线性系统更为复杂.近30年来,继文献[78]给出奇异系统解存在唯一的条件后,奇异系统的研究取得了突飞猛进的发展,学者们研究和解决了一系列奇异系统
业控制、社会经济和生物系统等众多实际问题中,随着系统模型精确度的提高,确定性系统建模已经不能够满足实际的要求,需要将随机因素考虑到模型中来.著名的Langevin方程、BlackSeholes方程均是考虑外界随机环境噪声 (白噪声) 干扰的具体实例[3334],这类方程被称为It随机微分方程[35].众所周知,基于It随机微分方程的随机控制已经在金融、经济、生物、网络等实际领域发挥了重要作用[3637],与之相关的大量的重要研究成果已经陆续被报道,如稳定和镇定[38]、随机H∞
为使奇异系统描述的实际模型更加精确,人们自然想到将外界环境噪声影响加入到模型中来.然而,由于奇异矩阵和扩散矩阵同时出现在系统模型中,使得这类系统兼具确定性奇异系统和正常随机系统的特征,所以研究起来也具有一定的挑战性.目前为止,关于奇异随机系统的研究成果远没有确定奇异系统丰富和成熟,相关的研究文献也比较少.
最早研究奇异随机系统的文献可追溯到2004年,Raouf等[45]将确定性奇异系统正则和无脉冲的定义移植到奇异随机系统,通过李雅普诺夫方法研究了状态依噪声的奇异马尔可夫跳变系统的鲁棒稳定和镇定问题,文中并没有给出对奇异随机系统的It公式的严格证明.随后,Ho等[46]研究了奇异It随机系统的稳定和滤波问题,首次给出了奇异It随机系统有无脉冲解的条件,该条件与确定奇异系统不同,它包含了扩散矩阵.同时,通过引入奇异矩阵E
的广义逆E+
给出奇异随机系统的It公式,并给出了严格的证明.然而,该文没有给出奇异It随机系统容许性完善的证明.尽管如此,该文的出现为奇异It随机系统的后续研究奠定了重要理论基础.Huang等[47]研究了一类状态依噪声的奇异马尔可夫跳变随机系统的指数稳定性,以两种矩阵分解的形式给出了系统方程有无脉冲解的新条件,降低了文献[46]给出无脉冲解条件的保守性,将状态依噪声的奇异随机混杂系统转化成等价的奇异马尔可夫跳变系统,利用奇异马尔可夫跳变系统的正则、无脉冲、随机容许性的定义给出奇异随机系统均方正则、均方无脉冲、均方稳定和均方容许的定义.利用文献[46]给出的奇异随机系统的无脉冲解条件,Gao等[48]研究了奇异随机系统的状态估计和控制问题,文献[4950]将文献[46]的条件进一步推广到奇异随机马尔可夫跳变系统,讨论了不确定时滞奇异混杂系统的鲁棒H∞
滤波控制问题.Gao等[51]给出了奇异随机系统有无脉冲解且均方指数稳定的完整证明,从而改进和完善了文献[46]的稳定结果.Wang[52]通过设计一种包含奇异矩阵的特殊控制器,给出了一类控制器进入扩散项的奇异随机混杂系统指数稳定的条件.Xing等[53]研究了具有范数界参数不确定性的有限时间奇异随机系统的鲁棒H∞
控制,基于扩展的二次李雅普诺夫函数法研究了随机TS模糊奇异系统的均方容许性[54].Zhang等[55]分别用两种方法讨论了连续和离散时间奇异随机系统的稳定,提出了一种新的解的存在唯一条件,利用
H
表示法将随机奇异系统转化成等价的n(n+1)2维标准的确定性奇异系统,从而改进了文献[47]的结果,将文献[51]的假设条件进一步减弱,使得所研究的奇异随机系统更有普遍性,并用严格的LMI法給出了系统均方容许的新条件.此外,文献[55]首次给出了离散时间奇异随机系统均方容许的LMI条件.文献[56] 进一步讨论了连续和离散时间奇异随机马尔可夫跳变系统的稳定性,明确提出了奇异随机马尔可夫跳变系统“无脉冲”和“均方容许”的新概念,同时,该文从奇异随机系统本身出发,将对系统均方容许性的讨论直接转化为严格的LMI求解,大大简化了计算过程.在文献[5556]的基础上,Zhao等[57]研究了奇异随机马尔可夫跳变系统的镇定和状态观测器设计,用顺序不等式法克服扩散项导致的求解困难,用严格的LMI法求出了误差系统的控制器增益和观测器增益.最近,Zhao等[5859]讨论了奇异随机系统的状态反馈H∞ 查阅文献发现,研究奇异随机系统不可避免地涉及以下几个基础问题:
1) 怎样给出系统方程解存在的条件?
2) 怎样给出系统有无脉冲解及容许性的定义?
3) 怎样给出奇异随机系统的It公式?
4) 怎样研究奇异随机系统的稳定性?
以上几个基础问题的解决对研究奇异随机系统的相关控制问题起到了至关重要的作用.为此,本文回顾和整理了连续时间奇异随机系统关于解的存在唯一条件、It公式、容许性定义及稳定问题的现有研究结果,并针对一些问题提出自己的研究观点.
本文结构如下:首先综述连续时间奇异It随机系统解的存在唯一条件,接下来总结系统无脉冲及容许定义的进展,然后归纳现有文献给出奇异It随机系统的It公式,最后探讨奇异随机系统稳定问题的研究现状.
2正则、无脉冲及容许性
确定性奇异系统的解存在非正则解与脉冲解,这些解的存在对系统的动态特性有非常坏的影响.因此,研究奇异系统解的正则性和无脉冲性显得尤为重要.而对于奇异随机系统,扩散矩阵的存在使得正则性已经不再构成系统方程解存在的条件.那么,我们如何给出奇异随机系统无脉冲性及容许性的定义呢?为方便将确定性奇异系统和随机奇异系统的结论加以对比,我们分别给出它们正则、无脉冲及容许的定义.
4奇异随机系统的稳定
稳定是系统分析和综合首先要考虑的问题.由于奇异随机系统的解存在脉冲摄动,因此研究奇异随机系统的稳定必须要保证系统的解是无脉冲的.目前,研究奇异随机系统的稳定問题通常有两种方法,一种是传统的Lyapunov方法,一种是将奇异随机系统转化成确定的奇异系统,通过确定奇异系统的稳定来给出随机奇异系统稳定的条件.
文献[47]在定义2与定义3的基础上利用奇异系统 (10)容许性的研究结果给出奇异随机系统(2)均方容许的LMI条件.
不但将定理12中包含等式LMI条件转化成严格的LMI形式,而且式(22)形式更易于讨论奇异随机系统的镇定问题.
5结论
本文综述了奇异It随机系统解的存在条件、广义It公式、容许性定义及稳定问题的研究结果,并针对这些不同的结果提出了自己的研究观点.第1部分回顾了确定性奇异系统和随机奇异系统的研究现状,提出奇异随机系统研究中涉及的重要问题.第2部分总结了奇异随机系统解的存在条件,明确了该系统解的存在条件并不是唯一的,扩散矩阵起到了至关重要的作用,并给出了不同条件之间的包含关系.第3部分归纳了现有文献给出的奇异It随机系统的广义It公式,分析了个别研究结果的不合理性.第4部分概述了奇异It随机系统稳定问题的研究进展,比较了所给稳定条件的保守性.
目前为止,现有文献给出的奇异随机系统解的存在唯一条件均为充分的,发展充分且必要的解存在唯一条件将会对奇异随机系统的研究起到重大的推动作用.此外,奇异随机系统稳定问题的研究结果均是基于一定的假设条件进行的,如何去掉假设条件,使得奇异随机系统的研究如同确定性奇异系统一样通过直接寻求线性不等式的解来给出系统均方容许条件值得进一步研究.
参考文献
References
[1]Rosenbrock H H.Structural properties of linear dynamical systems[J].International Journal of Control,1974,20(2):191202
[2]王慧姣.不确定奇异系统的鲁棒控制研究[D].杭州:浙江大学信息科学与工程学院,2008
WANG Huijiao.Study on robust control for uncertain singular systems[D].Hangzhou:College of Information Science and Engineering,Zhejiang University,2008
[3]Luenberger D G,Arbel A.Singular dynamic Leontief systems[J].Econometrica,1977,45(4):991995
[4]Luenberger D G.Dynamic equations in descriptor form[J].IEEE Transactions on Automatic Control,1977,22(3):312321
[5]Hemami H,Wyman B F.Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane[J].IEEE Transactions on Automatic Control,1979,24(4):526535
[6]Ardema M D.Singular perturbations in systems and control[M].New York:SpringerVerlag Wien,1983
[7]Lewis F L.A survey of linear singular systems[J].Circuits,Systems and Signal Processing,1986,5(1):336
[8]Dai L Y.Singular control systems lecture notes in control and information sciences[M].New York:Springer,1989
[9]Ailon A.On the design of output feedback for finite and infinite pole assignment in singular systems with application to the control problem of constrained robots[J].Circuits,Systems and Signal Processing,1994,13(5):525544 [10]吳争光.广义时滞系统的分析与综合[D].杭州:浙江大学控制科学与工程学院,2011
WU Zhengguang.Analysis and synthesis of singular systems with timedelay[D].Hangzhou:College of Control Science anf Engineering,Zhejiang University,2011
[11]Takaba K,Morihira N,Katayama T.A generalized Lyapunov theorem for descriptor system[J].Systems & Control Letters,1995,24(1):4951
[12]Xu S Y,Yang C W.Stabilization of discretetime singular systems:A matrix inequalities approach[J].Automatica,1999,35(9):16131617
[13]Xu S Y,Yang C W.An algebraic approach to the robust stability analysis and robust stabilization of uncertain singular systems[J].International Journal of Systems Science,2010,31(1):5561
[14]Ishihara J Y,Terra M H.On the Lyapunov theorem for singular systems[J].IEEE Transactions on Automatic Control,2002,47(11):19261930
[15]Xu S Y,Van Dooren P,Stefen R,et al.Robust stability and stabilization for singular systems with state delay and parameter uncertainty[J].IEEE Transactions on Automatic Control,2002,47(7):11221128
[16]Xu S Y,Lam J.Robust stability and stabilization of discretetime singular systems:An equivalent characterization[J].IEEE Transactions on Automatic Control,2004,49(4):568574
[17]Masubuchi I,Kamitane Y,Ohara A,et al.H∞
control for descriptor systems:A matrix inequalities approach[J].Automatica,1997,33(4):669673
[18]Shi P,Boukas E K,Agarwal R K.Robust control of singular continuoustime systems with delays and uncertainties[C]∥The 39th IEEE Conference on Decision and Control,2000:15151520
[19]Kim J H,Lee J H,Hong B P.Robust H∞
control of singular systems with time delays and uncertainties via LMI approach[C]∥American Control Conference,2002:620621
[20]Xu S Y,Lam J,Yang C W.Robust H∞
control for discrete singular systems with state delay and parameter uncertainty[J].Dynamics of Continuous,Discrete and Impulsive Systems Series B:Application and Algorithm,2002,4(4):539554
[21]Xu S Y,Lam J,Yang C W.Robust H∞
control for uncertain singular systems with state delay[J].International Journal of Robust and Nonlinear Control,2003,13(13):12131223
[22]Ji X,Su H Y,Chu J.Robust state feedback control for uncertain linear discrete singular systems[J].IET Control Theory & Application,2007,1(1):195200
[23]Chadli M,Darouach M.Further enhancement on robust control design for discretetime singular systems[J].IEEE Transactions on Automatic Control,2014,59(2):494499 [24]Xu S Y,Lam J,Zou Y.H∞
filtering for singular systems[J].IEEE Transactions on Automatic Control,2003,48(12):22172222
[25]Xu S Y,Lam J.Robust control and filtering of singular systems[M].Berlin:SpringerVerlag,2006
[26]Xu S Y,Lam J.Reducedorder H∞
filtering for singular systems[J].Systems and Control Letters,2007,56(1):4857
[27]Zhang L X,Huang B,Lam J.LMI synthesis of H2
and mixed H2/H∞
controllers for singular systems[J].IEEE Transactions on Signal Processing,Circuits and Systems II:Analog and Digital,2003,50(9):615626
[28]Yue D,Lam J.Suboptimal robust mixed H2/H∞
controller design for uncertain descriptor systems with distributed delays[J].Computers & Mathematics with Applications,2004,47(6/7):10411055
[29]Xia Y Q,Shi P,Liu G P,et al.Robust mixed H2/H∞
statefeedback control for continuoustime descriptor systems with parameter uncertainties[J].Circuits,Systems and Signal Processing,2005,24(4):431443
[30]張庆灵,杨冬梅.不确定广义系统的分析与综合[M].沈阳:东北大学出版社,2003
ZHANG Qingling,YANG Dongmei.Analysis and synthesis for uncertain descriptor systems[M].Shenyang:Northeastern University Press,2003
[31]张庆灵,杨冬梅,姚波,等.广义系统[M].北京:科学出版社,2004
ZHANG Qingling,YANG Dongmei,YAO Bo,et al.Generalized system[M].Beijing:Science Press,2004
[32]鲁仁全,苏宏业,薛安克,等.奇异系统的鲁棒控制理论[M].北京:科学出版社,2008
LU Renquan,SU Hongye,XUE Anke,et al.Robust control theory for singular systems[M].Beijing:Science Press,2008
[33]Langevin P.Sur la théorie du mouvement Brownien[J].CR Acad Sci Paris,1908,146:530533
[34]Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637654
[35]It K.On stochastic differential equations[J].American Mathematical Society,1951,18(3):491508
[36]Oksendal B.Stochastic differential equations:an introduction with application[M].New York:Springer,1998
[37]Mao X R,Yuan C G.Stochastic differential equations with Markovian switching[M].London:Imperial College Press,2006
[38]Wang Z D,Hong Q,Burnham K J.On stabilization of bilinear uncertain timedelay stochastic systems with Markovian jumping parameters[J].IEEE Transactions on Automatic Control,2002,47(4):640646
[39]Hinrichsen D,Pritchard A.Stochastic H∞
[J].SIAM Journal on Control and Optimization,1998,36(5):15041538
[40]El Bouhtouri A,Hinrichsen D,Pritchard A J.H∞type control for discretetime stochastic systems[J].International Journal of Robust and Nonlinear Control,1999,9(13):923948 [41]Wang Z D,Lam J,Liu X H.Nonlinear filtering for state delayed systems with Markovian switching[J].IEEE Transactions on Signal Processing,2003,51(9):23212328
[42]Chen B S,Zhang W H.Stochastic H2/H∞
control with statedependent noise[J].IEEE Transactions on Automatic Control,2004,49(1):4557
[43]Zhang W H,Huang Y L,Zhang H S.Stochastic H2/H∞
control for discrete time systems with state and disturbance dependent noise[J].Automatica,2007,43(3):513521
[44]Zhang W H,Huang Y L,Xie L H.Infinite horizon stochastic H2/H∞
control for discretetime systems with state and disturbance dependent noise[J].Automatica,2008,44(9):23062316
[45]Raouf J,Boukas E K.Robust stabilization of Markovian jump linear singular systems with Wiener process[C]∥American Control Conference,2004:31703175
[46]Ho D W C,Shi X Y,Wang Z D,et al.Filtering for a class of stochastic descriptor systems[C]∥International Conference on Dynamics of Continuous,Discrete and Impulsive Systems,2005(2):848853
[47]Huang L R,Mao X R.Stability of singular stochastic systems with Markovian switching[J].IEEE Transactions on Automatic Control,2011,56(2):424429
[48]Gao Z Y,Shi X Y.Stochastic state estimation and control for stochastic descriptor systems[C]∥IEEE Conference on Robotics,Automation and Mechatronics,2008:331336
[49]Xia J W.Robust H∞ filtering design for uncertain timedelay singular stochastic systems with Markovian jump[J].Journal of Control Theory and Applications,2007,5(4):331335
[50]夏建偉.连续随机时滞系统鲁棒控制和滤波[D].南京:南京理工大学自动化学院,2007
XIA Jianwei.Robust control and filter for continuous timedelay stochastic systems[D].Nanjing:School of Automation,Nanjing University of Science and Technology,2007
[51]Gao Z W,Shi X Y.Observerbased controller design for stochastic descriptor systems with Brownian motions[J].Automatica,2013,49(7):22292235
[52]Wang G L.Stochastic stabilization of singular systems with Markovian switchings[J].Applied Mathematics and Computation,2015,250:390401
[53]Xing S Y,Zhang Q L,Yuan S,et al.Robust finitetime H∞
control for uncertain stochastic singular systems[C]∥The 33rd Chinese Control Conference,2014:53455350
[54]Xing S Y,Zhang Q L,Zhu B Y.Meansquare admissibility for stochastic TS fuzzy singular systems based on extended quadratic Lyapunov function approach[J].Fuzzy Sets and Systems,2017,307:99114
[55]Zhang W H,Zhao Y,Sheng L.Some remarks on stability of stochastic singular systems with statedependent noise[J].Automatica,2015,51:273277 [56]Zhao Y,Zhang W H.New results on stability of singular stochastic Markov jump systems with statedependent noise[J].International Journal of Robust and Nonlinear Control,2016,26(10):21692186
[57]Zhao Y,Zhang W H.Observerbased controller design for singular stochastic Markov jump systems with state dependent noise[J].Journal of Systems Science and Complexity,2016,29(4):946958
[58]Zhao Y,Zhang W H.Stochastic state feedback H∞
control for singular systems with multiplicative noise[C]∥The 35th Chinese Control Conference,2016:17291733
[59]Zhao Y,Jiang X S,Zhang W H.Stochastic H∞
control for discretetime singular systems with state and disturbance dependent noise[J].Discrete Dynamics in Nature and Society,2017,DOI:101155/2017/4173852
[60]Zhao Y,Zhang W H.Robust stochastic stability and H∞
control for uncertain singular Markovian jump systems with multiplicative noise[J].Asian Journal of Control,2017,DOI:101002/asjc.1543
[61]Li J H,Zhang Q L.An integral sliding mode control approach to observerbased stabilization of stochastic It descriptor systems[J].Neurocomputing,2016,173:13301340
[62]Mathiyalagan K,Balachandran K.Finitetime stability of fractionalorder stochastic singular systems with time delay and white noise[J].Complexity,2016,21(S2):370379
[63]Zhang W H,Lin Y N,Xue L R.Linear quadratic Pareto optimal control problem of stochastic singular systems[J].Journal of the Franklin Institute,2017,354(2):12201238
[64]Boukas E K.Stabilization of stochastic singular nonlinear hybrid systems[J].Nonlinear Analysis:Theory,Methods & Applications,2006,64(2):217228
[65]Bellman R E.Introduction to matrix analysis[M].New York:McGrawHill,1970
[66]Zhang W H,Chen B S.H
AbstractIn recent years,singular stochastic systems governed by the It stochastic differential equation have received much attention due to their extensive applications to some practical areas.However,it is very complicated to discuss singular stochastic systems since the system equation includes both the singular matrix and the diffusion matrix simultaneously.In this paper,research development of several important and basic problems for singular It stochastic systems are concluded,including mainly the existence condition for the solution to the system equation,the general It formula,the definition of admissibility and the issue of stability.Also,some research perspectives are given for results of different references.Finally,some prospects to the unresolved problems are presented.
Key wordssingular It stochastic systems;existence of the solution;generalized It formula;admissibility;stability
近年来,一类由It随机微分方程驱动的奇异随机系统因其在实际领域中的广泛应用而备受关注.然而,系统方程同时包含奇异矩阵和扩散矩阵,大大增加了分析问题的复杂性.本文首先概述了奇异It随机系统几个重要基础问题的研究进展,主要包括:系统方程解的存在条件、广义It公式、 容许性定义及稳定性问题.同时针对不同文献对上述问题的研究结果提出了自己的观点.最后对以上基础问题研究待解决的问题进行了展望.关键词
奇异It随机系统;解的存在条件;广义It公式;容许性;稳定性
中图分类号TP13
文献标志码A
0引言
1974年,英国学者Rosenbrock在研究复杂电网时,发现电网中某些部件突然失效,在失效的前后时刻有电流的瞬动现象,这种瞬间的变化不包括在常见的正常线性系统描述之中.在经历了大量的研究与试验后,他首次提出了基于电网的“奇异系统”的模型[12]
.随后,美国学者Luenberger发现经济领域中著名的动态Leontief投入产出模型也属于奇异系统,并在文献[3]中讨论了这类系统的解的存在唯一条件.至此,人们对奇异系统的研究正式拉开帷幕,并逐渐发展为现代控制理论的一大分支.随着研究的不断深入,在许多实际问题中诸如大规模系统[4]、 机械工程[5]、航空模型[6]、 网路理论[78]、受限机器人[9]等相继发现了奇异系统的广泛应用.奇异系统又被称为广义系统、描述系统、隐式系统、微分代数系统等[2,10].
从式(1)可以看出,当E
为可逆阵时,通过非奇异变换可将奇异系统转化为正常线性系统,因而可以说正常线性系统是奇异系统的特例,奇异系统是正常线性系统的推广,正是这种推广赋予了奇异系统新的独有的特性[78].比如奇异系统的解结构中,不仅包含指数解还包含脉冲解,为了保证解的适定性,所研究的奇异系统必须要满足正则性和无脉冲性的条件;奇异系统一般包括慢子系统和快子系统两部分,其中慢子系统由微分方程(连续系统)或差分方程(离散系统)来描述,而快子系统由静态的代数方程来描述;奇异系统不一定有李雅普诺夫意义下的稳定性和镇定性,因为正常线性系统一般选李雅普诺夫函数为V(x)=xT(t)Px(t),P>0是正定的,而奇异系统选的李雅普诺夫函数V(x)=xT(t)ETPx(t),ETP=PTE≥0
是不定的(针对连续系统).正是由于奇异系统的以上特点,使其研究起来比正常的线性系统更为复杂.近30年来,继文献[78]给出奇异系统解存在唯一的条件后,奇异系统的研究取得了突飞猛进的发展,学者们研究和解决了一系列奇异系统
业控制、社会经济和生物系统等众多实际问题中,随着系统模型精确度的提高,确定性系统建模已经不能够满足实际的要求,需要将随机因素考虑到模型中来.著名的Langevin方程、BlackSeholes方程均是考虑外界随机环境噪声 (白噪声) 干扰的具体实例[3334],这类方程被称为It随机微分方程[35].众所周知,基于It随机微分方程的随机控制已经在金融、经济、生物、网络等实际领域发挥了重要作用[3637],与之相关的大量的重要研究成果已经陆续被报道,如稳定和镇定[38]、随机H∞
为使奇异系统描述的实际模型更加精确,人们自然想到将外界环境噪声影响加入到模型中来.然而,由于奇异矩阵和扩散矩阵同时出现在系统模型中,使得这类系统兼具确定性奇异系统和正常随机系统的特征,所以研究起来也具有一定的挑战性.目前为止,关于奇异随机系统的研究成果远没有确定奇异系统丰富和成熟,相关的研究文献也比较少.
最早研究奇异随机系统的文献可追溯到2004年,Raouf等[45]将确定性奇异系统正则和无脉冲的定义移植到奇异随机系统,通过李雅普诺夫方法研究了状态依噪声的奇异马尔可夫跳变系统的鲁棒稳定和镇定问题,文中并没有给出对奇异随机系统的It公式的严格证明.随后,Ho等[46]研究了奇异It随机系统的稳定和滤波问题,首次给出了奇异It随机系统有无脉冲解的条件,该条件与确定奇异系统不同,它包含了扩散矩阵.同时,通过引入奇异矩阵E
的广义逆E+
给出奇异随机系统的It公式,并给出了严格的证明.然而,该文没有给出奇异It随机系统容许性完善的证明.尽管如此,该文的出现为奇异It随机系统的后续研究奠定了重要理论基础.Huang等[47]研究了一类状态依噪声的奇异马尔可夫跳变随机系统的指数稳定性,以两种矩阵分解的形式给出了系统方程有无脉冲解的新条件,降低了文献[46]给出无脉冲解条件的保守性,将状态依噪声的奇异随机混杂系统转化成等价的奇异马尔可夫跳变系统,利用奇异马尔可夫跳变系统的正则、无脉冲、随机容许性的定义给出奇异随机系统均方正则、均方无脉冲、均方稳定和均方容许的定义.利用文献[46]给出的奇异随机系统的无脉冲解条件,Gao等[48]研究了奇异随机系统的状态估计和控制问题,文献[4950]将文献[46]的条件进一步推广到奇异随机马尔可夫跳变系统,讨论了不确定时滞奇异混杂系统的鲁棒H∞
滤波控制问题.Gao等[51]给出了奇异随机系统有无脉冲解且均方指数稳定的完整证明,从而改进和完善了文献[46]的稳定结果.Wang[52]通过设计一种包含奇异矩阵的特殊控制器,给出了一类控制器进入扩散项的奇异随机混杂系统指数稳定的条件.Xing等[53]研究了具有范数界参数不确定性的有限时间奇异随机系统的鲁棒H∞
控制,基于扩展的二次李雅普诺夫函数法研究了随机TS模糊奇异系统的均方容许性[54].Zhang等[55]分别用两种方法讨论了连续和离散时间奇异随机系统的稳定,提出了一种新的解的存在唯一条件,利用
H
表示法将随机奇异系统转化成等价的n(n+1)2维标准的确定性奇异系统,从而改进了文献[47]的结果,将文献[51]的假设条件进一步减弱,使得所研究的奇异随机系统更有普遍性,并用严格的LMI法給出了系统均方容许的新条件.此外,文献[55]首次给出了离散时间奇异随机系统均方容许的LMI条件.文献[56] 进一步讨论了连续和离散时间奇异随机马尔可夫跳变系统的稳定性,明确提出了奇异随机马尔可夫跳变系统“无脉冲”和“均方容许”的新概念,同时,该文从奇异随机系统本身出发,将对系统均方容许性的讨论直接转化为严格的LMI求解,大大简化了计算过程.在文献[5556]的基础上,Zhao等[57]研究了奇异随机马尔可夫跳变系统的镇定和状态观测器设计,用顺序不等式法克服扩散项导致的求解困难,用严格的LMI法求出了误差系统的控制器增益和观测器增益.最近,Zhao等[5859]讨论了奇异随机系统的状态反馈H∞ 查阅文献发现,研究奇异随机系统不可避免地涉及以下几个基础问题:
1) 怎样给出系统方程解存在的条件?
2) 怎样给出系统有无脉冲解及容许性的定义?
3) 怎样给出奇异随机系统的It公式?
4) 怎样研究奇异随机系统的稳定性?
以上几个基础问题的解决对研究奇异随机系统的相关控制问题起到了至关重要的作用.为此,本文回顾和整理了连续时间奇异随机系统关于解的存在唯一条件、It公式、容许性定义及稳定问题的现有研究结果,并针对一些问题提出自己的研究观点.
本文结构如下:首先综述连续时间奇异It随机系统解的存在唯一条件,接下来总结系统无脉冲及容许定义的进展,然后归纳现有文献给出奇异It随机系统的It公式,最后探讨奇异随机系统稳定问题的研究现状.
2正则、无脉冲及容许性
确定性奇异系统的解存在非正则解与脉冲解,这些解的存在对系统的动态特性有非常坏的影响.因此,研究奇异系统解的正则性和无脉冲性显得尤为重要.而对于奇异随机系统,扩散矩阵的存在使得正则性已经不再构成系统方程解存在的条件.那么,我们如何给出奇异随机系统无脉冲性及容许性的定义呢?为方便将确定性奇异系统和随机奇异系统的结论加以对比,我们分别给出它们正则、无脉冲及容许的定义.
4奇异随机系统的稳定
稳定是系统分析和综合首先要考虑的问题.由于奇异随机系统的解存在脉冲摄动,因此研究奇异随机系统的稳定必须要保证系统的解是无脉冲的.目前,研究奇异随机系统的稳定問题通常有两种方法,一种是传统的Lyapunov方法,一种是将奇异随机系统转化成确定的奇异系统,通过确定奇异系统的稳定来给出随机奇异系统稳定的条件.
文献[47]在定义2与定义3的基础上利用奇异系统 (10)容许性的研究结果给出奇异随机系统(2)均方容许的LMI条件.
不但将定理12中包含等式LMI条件转化成严格的LMI形式,而且式(22)形式更易于讨论奇异随机系统的镇定问题.
5结论
本文综述了奇异It随机系统解的存在条件、广义It公式、容许性定义及稳定问题的研究结果,并针对这些不同的结果提出了自己的研究观点.第1部分回顾了确定性奇异系统和随机奇异系统的研究现状,提出奇异随机系统研究中涉及的重要问题.第2部分总结了奇异随机系统解的存在条件,明确了该系统解的存在条件并不是唯一的,扩散矩阵起到了至关重要的作用,并给出了不同条件之间的包含关系.第3部分归纳了现有文献给出的奇异It随机系统的广义It公式,分析了个别研究结果的不合理性.第4部分概述了奇异It随机系统稳定问题的研究进展,比较了所给稳定条件的保守性.
目前为止,现有文献给出的奇异随机系统解的存在唯一条件均为充分的,发展充分且必要的解存在唯一条件将会对奇异随机系统的研究起到重大的推动作用.此外,奇异随机系统稳定问题的研究结果均是基于一定的假设条件进行的,如何去掉假设条件,使得奇异随机系统的研究如同确定性奇异系统一样通过直接寻求线性不等式的解来给出系统均方容许条件值得进一步研究.
参考文献
References
[1]Rosenbrock H H.Structural properties of linear dynamical systems[J].International Journal of Control,1974,20(2):191202
[2]王慧姣.不确定奇异系统的鲁棒控制研究[D].杭州:浙江大学信息科学与工程学院,2008
WANG Huijiao.Study on robust control for uncertain singular systems[D].Hangzhou:College of Information Science and Engineering,Zhejiang University,2008
[3]Luenberger D G,Arbel A.Singular dynamic Leontief systems[J].Econometrica,1977,45(4):991995
[4]Luenberger D G.Dynamic equations in descriptor form[J].IEEE Transactions on Automatic Control,1977,22(3):312321
[5]Hemami H,Wyman B F.Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane[J].IEEE Transactions on Automatic Control,1979,24(4):526535
[6]Ardema M D.Singular perturbations in systems and control[M].New York:SpringerVerlag Wien,1983
[7]Lewis F L.A survey of linear singular systems[J].Circuits,Systems and Signal Processing,1986,5(1):336
[8]Dai L Y.Singular control systems lecture notes in control and information sciences[M].New York:Springer,1989
[9]Ailon A.On the design of output feedback for finite and infinite pole assignment in singular systems with application to the control problem of constrained robots[J].Circuits,Systems and Signal Processing,1994,13(5):525544 [10]吳争光.广义时滞系统的分析与综合[D].杭州:浙江大学控制科学与工程学院,2011
WU Zhengguang.Analysis and synthesis of singular systems with timedelay[D].Hangzhou:College of Control Science anf Engineering,Zhejiang University,2011
[11]Takaba K,Morihira N,Katayama T.A generalized Lyapunov theorem for descriptor system[J].Systems & Control Letters,1995,24(1):4951
[12]Xu S Y,Yang C W.Stabilization of discretetime singular systems:A matrix inequalities approach[J].Automatica,1999,35(9):16131617
[13]Xu S Y,Yang C W.An algebraic approach to the robust stability analysis and robust stabilization of uncertain singular systems[J].International Journal of Systems Science,2010,31(1):5561
[14]Ishihara J Y,Terra M H.On the Lyapunov theorem for singular systems[J].IEEE Transactions on Automatic Control,2002,47(11):19261930
[15]Xu S Y,Van Dooren P,Stefen R,et al.Robust stability and stabilization for singular systems with state delay and parameter uncertainty[J].IEEE Transactions on Automatic Control,2002,47(7):11221128
[16]Xu S Y,Lam J.Robust stability and stabilization of discretetime singular systems:An equivalent characterization[J].IEEE Transactions on Automatic Control,2004,49(4):568574
[17]Masubuchi I,Kamitane Y,Ohara A,et al.H∞
control for descriptor systems:A matrix inequalities approach[J].Automatica,1997,33(4):669673
[18]Shi P,Boukas E K,Agarwal R K.Robust control of singular continuoustime systems with delays and uncertainties[C]∥The 39th IEEE Conference on Decision and Control,2000:15151520
[19]Kim J H,Lee J H,Hong B P.Robust H∞
control of singular systems with time delays and uncertainties via LMI approach[C]∥American Control Conference,2002:620621
[20]Xu S Y,Lam J,Yang C W.Robust H∞
control for discrete singular systems with state delay and parameter uncertainty[J].Dynamics of Continuous,Discrete and Impulsive Systems Series B:Application and Algorithm,2002,4(4):539554
[21]Xu S Y,Lam J,Yang C W.Robust H∞
control for uncertain singular systems with state delay[J].International Journal of Robust and Nonlinear Control,2003,13(13):12131223
[22]Ji X,Su H Y,Chu J.Robust state feedback control for uncertain linear discrete singular systems[J].IET Control Theory & Application,2007,1(1):195200
[23]Chadli M,Darouach M.Further enhancement on robust control design for discretetime singular systems[J].IEEE Transactions on Automatic Control,2014,59(2):494499 [24]Xu S Y,Lam J,Zou Y.H∞
filtering for singular systems[J].IEEE Transactions on Automatic Control,2003,48(12):22172222
[25]Xu S Y,Lam J.Robust control and filtering of singular systems[M].Berlin:SpringerVerlag,2006
[26]Xu S Y,Lam J.Reducedorder H∞
filtering for singular systems[J].Systems and Control Letters,2007,56(1):4857
[27]Zhang L X,Huang B,Lam J.LMI synthesis of H2
and mixed H2/H∞
controllers for singular systems[J].IEEE Transactions on Signal Processing,Circuits and Systems II:Analog and Digital,2003,50(9):615626
[28]Yue D,Lam J.Suboptimal robust mixed H2/H∞
controller design for uncertain descriptor systems with distributed delays[J].Computers & Mathematics with Applications,2004,47(6/7):10411055
[29]Xia Y Q,Shi P,Liu G P,et al.Robust mixed H2/H∞
statefeedback control for continuoustime descriptor systems with parameter uncertainties[J].Circuits,Systems and Signal Processing,2005,24(4):431443
[30]張庆灵,杨冬梅.不确定广义系统的分析与综合[M].沈阳:东北大学出版社,2003
ZHANG Qingling,YANG Dongmei.Analysis and synthesis for uncertain descriptor systems[M].Shenyang:Northeastern University Press,2003
[31]张庆灵,杨冬梅,姚波,等.广义系统[M].北京:科学出版社,2004
ZHANG Qingling,YANG Dongmei,YAO Bo,et al.Generalized system[M].Beijing:Science Press,2004
[32]鲁仁全,苏宏业,薛安克,等.奇异系统的鲁棒控制理论[M].北京:科学出版社,2008
LU Renquan,SU Hongye,XUE Anke,et al.Robust control theory for singular systems[M].Beijing:Science Press,2008
[33]Langevin P.Sur la théorie du mouvement Brownien[J].CR Acad Sci Paris,1908,146:530533
[34]Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637654
[35]It K.On stochastic differential equations[J].American Mathematical Society,1951,18(3):491508
[36]Oksendal B.Stochastic differential equations:an introduction with application[M].New York:Springer,1998
[37]Mao X R,Yuan C G.Stochastic differential equations with Markovian switching[M].London:Imperial College Press,2006
[38]Wang Z D,Hong Q,Burnham K J.On stabilization of bilinear uncertain timedelay stochastic systems with Markovian jumping parameters[J].IEEE Transactions on Automatic Control,2002,47(4):640646
[39]Hinrichsen D,Pritchard A.Stochastic H∞
[J].SIAM Journal on Control and Optimization,1998,36(5):15041538
[40]El Bouhtouri A,Hinrichsen D,Pritchard A J.H∞type control for discretetime stochastic systems[J].International Journal of Robust and Nonlinear Control,1999,9(13):923948 [41]Wang Z D,Lam J,Liu X H.Nonlinear filtering for state delayed systems with Markovian switching[J].IEEE Transactions on Signal Processing,2003,51(9):23212328
[42]Chen B S,Zhang W H.Stochastic H2/H∞
control with statedependent noise[J].IEEE Transactions on Automatic Control,2004,49(1):4557
[43]Zhang W H,Huang Y L,Zhang H S.Stochastic H2/H∞
control for discrete time systems with state and disturbance dependent noise[J].Automatica,2007,43(3):513521
[44]Zhang W H,Huang Y L,Xie L H.Infinite horizon stochastic H2/H∞
control for discretetime systems with state and disturbance dependent noise[J].Automatica,2008,44(9):23062316
[45]Raouf J,Boukas E K.Robust stabilization of Markovian jump linear singular systems with Wiener process[C]∥American Control Conference,2004:31703175
[46]Ho D W C,Shi X Y,Wang Z D,et al.Filtering for a class of stochastic descriptor systems[C]∥International Conference on Dynamics of Continuous,Discrete and Impulsive Systems,2005(2):848853
[47]Huang L R,Mao X R.Stability of singular stochastic systems with Markovian switching[J].IEEE Transactions on Automatic Control,2011,56(2):424429
[48]Gao Z Y,Shi X Y.Stochastic state estimation and control for stochastic descriptor systems[C]∥IEEE Conference on Robotics,Automation and Mechatronics,2008:331336
[49]Xia J W.Robust H∞ filtering design for uncertain timedelay singular stochastic systems with Markovian jump[J].Journal of Control Theory and Applications,2007,5(4):331335
[50]夏建偉.连续随机时滞系统鲁棒控制和滤波[D].南京:南京理工大学自动化学院,2007
XIA Jianwei.Robust control and filter for continuous timedelay stochastic systems[D].Nanjing:School of Automation,Nanjing University of Science and Technology,2007
[51]Gao Z W,Shi X Y.Observerbased controller design for stochastic descriptor systems with Brownian motions[J].Automatica,2013,49(7):22292235
[52]Wang G L.Stochastic stabilization of singular systems with Markovian switchings[J].Applied Mathematics and Computation,2015,250:390401
[53]Xing S Y,Zhang Q L,Yuan S,et al.Robust finitetime H∞
control for uncertain stochastic singular systems[C]∥The 33rd Chinese Control Conference,2014:53455350
[54]Xing S Y,Zhang Q L,Zhu B Y.Meansquare admissibility for stochastic TS fuzzy singular systems based on extended quadratic Lyapunov function approach[J].Fuzzy Sets and Systems,2017,307:99114
[55]Zhang W H,Zhao Y,Sheng L.Some remarks on stability of stochastic singular systems with statedependent noise[J].Automatica,2015,51:273277 [56]Zhao Y,Zhang W H.New results on stability of singular stochastic Markov jump systems with statedependent noise[J].International Journal of Robust and Nonlinear Control,2016,26(10):21692186
[57]Zhao Y,Zhang W H.Observerbased controller design for singular stochastic Markov jump systems with state dependent noise[J].Journal of Systems Science and Complexity,2016,29(4):946958
[58]Zhao Y,Zhang W H.Stochastic state feedback H∞
control for singular systems with multiplicative noise[C]∥The 35th Chinese Control Conference,2016:17291733
[59]Zhao Y,Jiang X S,Zhang W H.Stochastic H∞
control for discretetime singular systems with state and disturbance dependent noise[J].Discrete Dynamics in Nature and Society,2017,DOI:101155/2017/4173852
[60]Zhao Y,Zhang W H.Robust stochastic stability and H∞
control for uncertain singular Markovian jump systems with multiplicative noise[J].Asian Journal of Control,2017,DOI:101002/asjc.1543
[61]Li J H,Zhang Q L.An integral sliding mode control approach to observerbased stabilization of stochastic It descriptor systems[J].Neurocomputing,2016,173:13301340
[62]Mathiyalagan K,Balachandran K.Finitetime stability of fractionalorder stochastic singular systems with time delay and white noise[J].Complexity,2016,21(S2):370379
[63]Zhang W H,Lin Y N,Xue L R.Linear quadratic Pareto optimal control problem of stochastic singular systems[J].Journal of the Franklin Institute,2017,354(2):12201238
[64]Boukas E K.Stabilization of stochastic singular nonlinear hybrid systems[J].Nonlinear Analysis:Theory,Methods & Applications,2006,64(2):217228
[65]Bellman R E.Introduction to matrix analysis[M].New York:McGrawHill,1970
[66]Zhang W H,Chen B S.H
AbstractIn recent years,singular stochastic systems governed by the It stochastic differential equation have received much attention due to their extensive applications to some practical areas.However,it is very complicated to discuss singular stochastic systems since the system equation includes both the singular matrix and the diffusion matrix simultaneously.In this paper,research development of several important and basic problems for singular It stochastic systems are concluded,including mainly the existence condition for the solution to the system equation,the general It formula,the definition of admissibility and the issue of stability.Also,some research perspectives are given for results of different references.Finally,some prospects to the unresolved problems are presented.
Key wordssingular It stochastic systems;existence of the solution;generalized It formula;admissibility;stability