论文部分内容阅读
针对人脸识别算法复杂度高和误检率高的问题,提出了一种在二维主元分析(2DPCA)方法基础上,融合支持向量机(SVM)和AdaBoost训练法的近红外人脸识别新算法。该算法首先对近红外光照下的图像通过人脸检测、小波变换和二维主元分析得到"特征脸";然后,对特征数据先进行SVM分类学习,并以SVM学习结果作为初始分类器,再通过Ada-Boost方法进一步加强,形成强分类器,作用于待测样本,完成识别。实验证明,该算法不仅提高了分类器的分类能力,而且降低了计算的复杂度,在实际场景应用中有较高的识别率。