论文部分内容阅读
传统车道线检测算法大多数依赖手工制作特征和启发式算法的组合,容易受车辆遮挡和地面污损等因素的影响。针对影响车道线检测的复杂问题,将车道线检测视为连续细长区域实例分割问题,提出了一种基于密集分割网络的车道线检测方法。为此,使用稠密块构建了一个密集分割网络DSNet,该网络能够利用特征重复使用的特性提高提取车道线实例特征和恢复特征图分辨率的性能。同时,还引入了邻近AND运算和Meanshift聚类算法对DSNet网络的输出进行处理,减小了非车道线像素的影响,使得检测结果的边界线更为清晰。实验表明,本文方