论文部分内容阅读
基于无锚框深度学习的目标检测是一种主流的单阶段目标检测算法。融合多层监督信息的沙漏网络结构能够显著提升无锚框目标检测算法的精度,然而其速度却远低于同层次的普通网络的速度,并且不同尺度目标间的特征会互相干扰。针对上述问题,提出了一种非对称沙漏网络结构的目标检测算法。该算法在融合不同网络层的特征时不受形状大小的约束,能够快速高效抽象出网络的语义信息,使模型更容易学习到各种尺度之间的差异。针对不同尺度目标检测问题,设计了一种多尺度输出的沙漏网络结构用来解决不同尺度目标间特征互相干扰的问题,并精细化输出的检