论文部分内容阅读
石墨相氮化碳(g-C3N4)是一种新型的有机半导体材料, 具有独特的层状结构、合适的能带位置、简单的制备方法以及出色的稳定性等特点, 因而被广泛应用于光催化产氢领域. 但是, 较高的光生载流子的复合率和受限的迁移率大大地限制了g-C3N4的光催化产氢性能. 目前, 大量的研究证实块状g-C3N4的液相剥离、表面改性、元素掺杂、与其他半导体复合构筑异质结以及负载助催化剂等方法可以在一定程度上提高g-C3N4的光催化产氢性能. 但是单一的g-C3N4改性方法往往并不能获得最理想的光催化产氢性能, 因此, 本文采用低温磷化法制备了二价钴(Co(II))修饰的磷(P)掺杂的g-C3N4纳米片(Co(II)/PCN), 同时实现了掺杂P原子和负载空穴助催化剂Co(II), 该催化剂表现出出色的光催化产氢性能. 在光催化制氢过程中, 铂(Pt)纳米颗粒作为电子助催化剂成功的负载在Co(II)/PCN上. 光催化实验结果表明, 最佳的Pt/Co(II)/PCN复合材料光催化产氢速率达到774 μmol·g?1·h?1, 比纯相的g-C3N4纳米片(89.2 μmol·g?1·h?1)提升8.6倍. 同时优化的光催化剂具有良好的光催化稳定性, 并在402 nm处具有2.76%的量子产率. XRD, TEM, STEM-EDX和AFM结果证明, 成功制备了纳米片状形貌的g-C3N4及其复合材料, 催化剂中均匀的分布着Co和P元素. 通过XPS证明了P-N的存在以及Co(II)的存在, 并且Co(II)是 以一种无定型的CoOOH的形式吸附在g-C3N4表面. 光照后的TEM证明Pt颗粒成功的负载在Co(II)/PCN表面. UV-vis DRS表明, 由于P的掺杂以及Co(II)的修饰, Co(II)/PCN相比于g-C3N4纳米片在可见光区域光吸收有了明显的增强. 通过稳态和瞬态光致发光光谱分析, 同时结合电化学分析表征(i-t、EIS)以及电子顺磁共振技术分析, 证实了Co(II)/PCN高效光催化性能的原因可能是由于更高效的光生载流子分离效率. 本文对Pt/Co(II)/PCN可能的光催化增强机理提出了设想. P的掺杂可以优化g-C3N4的电子结构, 提高其光生载流子分离效率. 而以Pt作为电子助催化剂, 可以有效地捕获P掺杂的g-C3N4导带中的光生电子, 进而发生水还原产氢反应; 以Co(II)作为空穴助催化剂, 可以捕获价带中的光生空穴, 进而发生三乙醇胺氧化反应. 通过采用不同功能的助催化剂, 实现P掺杂g-C3N4光生电子空穴的定向分流, 促进了P掺杂g-C3N4的光生载流子的分离, 从而提高催化剂的光催化产氢性能. 本文可以为设计具有空穴-电子双助催化剂的光催化产氢系统提供一个新的思路.