论文部分内容阅读
设z=x+iy,w=u+iv,则w=f(z)=u(x,y)+iv(x,y),所以一个复变函数w=f(z)相当于定义两个二元函数u=u(x,y)和v=v(x,y),讨论一个复变函数的极限与连续性就相当于讨论两个二元函数的极限与连续性.所以复变函数与二元函数在某些概念、结论上有一定的相似之处,因此有必要比较复变函数与二元函数的某些分析性质.