论文部分内容阅读
化学模式分类问题通常是非线性的,而且比较复杂,难以用经典统计方法建立分类判别模型。以支持向量机(SVM)构建的分类器具有更好的分类性能。对于非线性分类,SVM通过核函数将其映射到高维特征空间中,然后再进行线性分类。因此,核函数往往是决定SVM非线性分类性能的关键。实际应用时,一般通过选择几种核函数,并对其参数进行优化,然后根据分类器的预测性能来决定,训练过程非常耗时,而且结果难以保证最优。为此,采用一种通用性的核函数,即PersonVg核函数(PUKF),它可取代目前常用的几种核函数,可避免SVM非线性分