论文部分内容阅读
为解决文本情感分类准确率不高的问题,提出了一种特征加权融合的朴素贝叶斯情感分类算法.通过分析单个情感词对文本情感分类的贡献度特征,根据情感词对文本情感贡献度的权值调整贝叶斯模型的后验概率;将文本中所有相同极性的情感词作为一个特征整体,根据特征整体对文本情感贡献度的权值调整贝叶斯模型的整体概率.为了进一步提高分类的准确率以及提升分类模型的综合性能,将两种加权方式同时与朴素贝叶斯模型结合.结果表明,融合后的方法在数据集上的整体平均查准率、查全率分别提高1.83%和3.42%,平均F1值提高了2.76%.