论文部分内容阅读
K均值算法是一种常用的聚类分析方法,广泛应用于图像处理和机器学习等领域。但该算法具有较高的计算复杂度,导致了算法具有较大的局限性。为了提高算法的运行效率,本文在深入分析算法基本原理的基础上,利用CUDA架构提供的强大计算能力对该算法进行了并行化改进。实验结果表明,算法在取不同的聚类数时均取得了较高的加速比。