论文部分内容阅读
Measurement-device-independent quantum key distribution(MDI-QKD) is aimed at removing all detector side channel attacks,while its security relies on the assumption that the encoding systems including sources are fully characterized by the two legitimate parties. By exploiting the mismatched-basis statistics in the security analysis, MDI-QKD even with uncharacterized qubits can generate secret keys. In this paper, considering the finite size effect, we study the decoy-state MDI-QKD protocol with mismatchedbasis events statistics by performing full parameter optimization, and the simulation result shows that this scheme is very practical.
Measurement-device-independent quantum key distribution (MDI-QKD) is aimed at removing all detector side channel attacks, while its security relies on the assumption that the encoding systems including sources are fully characterized by the two legitimate parties. By exploiting the mismatched- basis statistics in the security analysis, MDI-QKD even with uncharacterized qubits can generate secret keys. In this paper, considering the finite size effect, we study the decoy-state MDI-QKD protocol with mismatchedbasis events statistics by performing full parameter optimization, and the simulation result shows that this scheme is very practical.