论文部分内容阅读
针对现有图像去雾算法严重依赖中间量准确估计的问题,提出了一种基于Wasserstein生成对抗网络(WGAN)的端到端图像去雾模型。首先,使用全卷积密集块网络(FC-DenseNet)充分学习图像中雾的特征;其次,采用残差学习思想直接从退化图像中学习到清晰图像的特征,实现端到端的去雾;最后,使用均方误差和感知结构误差函数作为模型的损失函数,以确保生成图像结构和内容的相似度,并使用WGAN对生成结果细致优化,生成清晰逼真的无雾图像。实验结果表明,在合成雾天数据集上,该算法在结构相似度上比其他对比算法提