【摘 要】
:
在遗传算法中引入个体学习机制能够提高算法的性能,避免算法收敛过慢或陷入局部最优。常用的个体学习机制有两种,即拉马克学习与鲍德温学习,通过分析比较了两种学习机制在遗
论文部分内容阅读
在遗传算法中引入个体学习机制能够提高算法的性能,避免算法收敛过慢或陷入局部最优。常用的个体学习机制有两种,即拉马克学习与鲍德温学习,通过分析比较了两种学习机制在遗传算法中的性能差异,指出了它们各自的优势与不足。为进一步提高算法性能,基于"学习潜能"的新概念及利用鲍德温学习挖掘个体学习潜能的方法,将两种学习机制有机结合在一起,使学习的优势得到充分发挥,使其不足得到有效抑制。数值试验结果表明,包含两种学习机制的新算法取得了很好的效果。
其他文献
HLA分布式仿真标准由于其广泛适用性、可伸缩性及用户自定制性给数据收集与分析带来了很多新的挑战,在分析现有工具的优缺点和新的需求的基础上,设计、实现了基于HLA的仿真数据
多类标数据中的样本可能属于一个或多个类标,因此其分类问题较单类标分类更为复杂。提出一种新的多类标学习算法,首先针对多类标数据的特征属性维数高的特点,采用LLE算法对多类标数据的特征属性进行降维,提取能较完整描述数据的一组低维特征属性集;然后将多类标样本集按所属的类标进行划分,并采用贝叶斯分类模型来学习各组样本集的分类特性;根据各个分类模型的判定类标,综合得到多类标样本的最终类标集。将该算法分别应用
目的:探讨将手法复位联合鲑降钙素应用于压缩性胸腰椎骨折治疗中的临床效果。方法:选取我院骨科收治确诊为胸腰椎骨折患者72例,并将其分为各有36例的观察组与对照组,对照组单