论文部分内容阅读
将图论与机器学习方法相结合的阿尔茨海默病计算机辅助中,脑网络的构建大多是基于滤波去噪后的全频段BOLD信号匹配,忽略了不同脑活动信息的差异.因此,本文提出了一种多频段脑功能网络融合模型.首先将离散小波变换应用于BOLD信号中,得到不同频域下的体素信号,而后计算同频信号的相关性,获取不同频段下相关矩阵.而后计算所有矩阵的网络特征,在特征选择后基于SVM对患者进行分类.从实验结果可以看出,分频下的脑功能网络特征与未分频网络相比能在一定程度上提高分类的准确性;体素级网络由于可以更加详细的表达脑网络的变化,其分类效果要优于脑区级.