论文部分内容阅读
设图G是n阶的单图,G'是它的补图.用a(G)表示图G的代数连通度.在很多文献中,已经研究了邻接谱半径的Nordhaus—Gaddum型的界的问题.本文进一步探讨了代数连通度的Nordhaus—Gaddum型的界.得到:对树和其他一些图,a(G)+a(G')≥1成立,并刻画了等式成立时的图的特征.根据这些结果,最后提出这样一个猜想:对n阶的单图G,有n(G)+n(G')≥1.