论文部分内容阅读
基于注意力机制的卷积神经网络构建了番茄叶部病害识别系统。依据注意力机制构建并行注意力模块以提升特征提取能力,并与残差结构相结合构建PARNet模型。以分别患有早疫病、晚疫病、叶霉病、斑枯病和花叶病毒病这5类病害的叶片和健康叶片的叶部图像为研究对象,将PARNet模型与VGG16、ResNet50、SeNet等模型相对比,结果显示PARNet模型的识别率为96.91%,高出其他模型2.25%~11.58%。各类预测结果的精确率平均为96.84%。最后使用Flask完成WEB应用程序的开发,实现了跨平台