论文部分内容阅读
针对传统的小脑模型,提出了一种广义模糊小脑模型神经网络(GFCMAC)。它采用模糊隶属度函数作为接收域函数,可以获得较常规CMAC连续性强且有解析微分的复杂函数近似,具有计算量少,学习效率高等优点。研究了GFCMAC接收域函数的映射方法、隶属度函数及其参数的选取规律和学习算法。结合强化学习,提出了一种基于GFCAMC的强化学习算法,讨论了其实现过程。应用于船舶航向控制的仿真结果表明,在有各种风浪干扰下,船舶航向跟踪快且搡舵动作合理,适合船舶转向控制要求。