Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts in

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:meimeini
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A well-established strategy to synthesize heterogeneous,metal-organic framework (MOF) catalysts that exhibit nanoconfinement effects,and specific pores with highly-localized catalytic sites,is to use organic linkers containing organocatalytic centers.Here,we report that by combining this linker approach with reticular chemistry,and exploiting three-dimensioanl (3D) MOF-structural data from the Cambridge Structural Database,we have designed four heterogeneous MOF-based catalysts for standard organic transformations.These programmable MOFs are isoreticular versions of pcu IRMOF-16,fcu UiO-68 and pillared-pcu SNU-8X,the three most common topologies of MOFs built from the organic linker p,p'-terphenyldicarboxylic acid (tpdc).To synthesize the four squaramide-based MOFs,we designed end synthesized a linker,4,4'-((3,4-dioxocyclobut-l-ene-1,2-diyl)bis(azanedyil))dibenzoic acid (Sq_tpdc),which is identical in directionality and length to tpdc but which contains organocatalytic squaramide centers.Squaramides were chosen because their immobilization into a framework enhances its reactivity and stability while avoiding any self-quenching phenomena.Therefore,the four MOFs share the same organocatalytic squaramide moiety,but confine it within distinct pore environments.We then evaluated these MOFs as heterogeneous H-bonding catalysts in organic transformations:a Friedel-Crafts alkylation and an epoxide ring-opening.Some of them exhibited good performance in both reactions but all showed distinct catalytic profiles that reflect their structural differences.
其他文献
Eliminating colloidal toxicity and enabling its intrinsic fluorescence in aggressive environmental conditions are the key challenges for commercializing hydroph
Here,we report a facile synthetic methodology to prepare uniform single crystalline CeO2 nanotubes through a hydrothermal transformation of CeO2 nanorods in aqu
We establish a preliminary model of neural signal generation and transmission based on our previous research,and use this model to study signal transmission on
Hydrocarbons separation in petrochemical industries is a key,energy-consuming stage in the manufacture of high-quality added-value products--hence the need for
Non-covalent interactions are important for two-dimensional heterointerlaces but challenged to be aoouratelydetermined,especially when the dielectric hexagonal
Graphene foam (GF)—a three-dimensional network of hollow graphene branches-is a highly attractive material for diverse applications.However,to date,the heat di
There are many studies on the solution-processed thin-film transistor(TFT)using transition metal dichalcogenide(TMD)materials.However,it is hard to control the
Yolk@shell mesoporous nanoparticles have received close attention due to their controllable structures and integrated functions.However,most yolk@shell nanosyst
Carbon nanomaterials offer excellent prospects as therapeutic agents,and among them,graphene quantum dots (GQDs) have gained considerable interest thanks to the
Atomic noble metals stand as one of the most advanced catalysts because of their unique properties and interaction with the reactants.However,due to their high