论文部分内容阅读
搜索引擎中关于人名的相关文档往往数据量庞大,且数据为增量式更新过程,新文档出现的时间与规模都存在不确定性。现有的方法多为全局的人名聚类方法,在处理大规模数据时往往效率较低,且无法实现增量聚类。本文提出了一种基于关键证据与E。LSH的增量式人名聚类消歧方法。对于初始文档集,采用全局的人名聚类方法,保证聚类性能且能有效控制全局聚类的文档规模,提高聚类效率。对于增量文档集,利用提出的关键证据与E。LSH方法生成候选文档集,极大降低了需要计算相似度的文档规模,提高方法效率。实验结果表明,本文提出的增量式人名聚类消