论文部分内容阅读
生物体内的细胞生活在复杂的环境中。在生物体内,活性氧是普遍存在的。生物体内的活性氧可以诱导DNA损伤,最终破坏基因组稳定性。其中,对基因组损伤最严重的是DNA双链断裂损伤。肿瘤抑制因子p53是细胞内介导DNA损伤反应的重要因子。p53可以修复损伤DNA,保护轻度受损细胞。而当细胞受到严重损伤时,p53能够诱发细胞凋亡,从而维持机体稳态。p53的动力学对于细胞的反应性具有重要影响,然而对这方面却缺少系统的认识。因此在本文中,我们主要关注运用数学模型方法研究p53脉冲的动力学性质,从而揭示细胞内潜在的生死选择机制。
Cells in living organisms live in complex environments. In the body, reactive oxygen species are ubiquitous. Reactive oxygen species in the body can induce DNA damage that ultimately disrupts the genome’s stability. Among them, the most serious damage to the genome is DNA double-strand breaks. Tumor Suppressor p53 is an important factor in the intracellular mediation of DNA damage. p53 repairs damaged DNA and protects lightly damaged cells. When the cells are severely damaged, p53 can induce apoptosis and maintain the body’s homeostasis. The kinetics of p53 has a major impact on cellular reactivity, but there is a lack of systematic knowledge of this aspect. Therefore, in this paper, we mainly focus on the use of mathematical models to study the kinetics of p53 pulsing, revealing potential mechanisms of life and death selection in cells.