论文部分内容阅读
摘要: 应用立方非线性能量阱对结构振动抑制时,合理的选择和设计立方非线性刚度能大幅度提升振动抑制效果。论文从能量传递和耗散的角度,基于非保守系统的能量传递和耗散近似关系,提出一种理想立方非线性吸振器的刚度设计方法,使得吸振器在此类非线性中能够达到最高的振动抑制效率。针对一类具有线性和立方刚度组合形式的非线性吸振器振动效果问题,基于复变量平均法分析保守系统能量完全传递时相轨迹特性,得到此时初始能量、质量比需满足的条件;分析了耦合非线性振子的非保守系统刚度系数对线性振子的振动抑制效果,基于提出的立方刚度设计方法,确定最大能量耗散率时组合刚度参数设计范围。最后通过数值仿真验证了结论的正确性。
关键词: 非线性能量阱; 吸振器; 定向能量传递; 能量耗散; 振动抑制
中图分类号: O322; O328 文献标志码: A 文章编号: 1004-4523(2015)05-0785-08
引 言
非线性能量阱(Nonlinear Energy Sink, NES)能够有效地增加吸振带宽,并大幅度提升减振效率。与传统动力减振器不同,NES的振动抑制机理为定向能量传递(Targeted Energy Transfer, TET),这使得应用非线性进行振动抑制成为可能。经过10余年发展,NES的研究从最初单自由度、保守系统逐步发展到非保守、受复杂载荷的减振器,并开始应用到工程结构中去。借助其高效的减振效率和优异振动抑制性能,NES 正朝着航天器部、组件的减振结构设计方向发展。
合理选择和设计NES参数是减振器设计的重要步骤之一[1-2]。耦合单自由度立方非线性振子的保守系统在文献[3-4]讨论了系统实现TET的可能性,在文献[5-6]中的试验也证明这个结论。对于耦合具有理想立方刚度形式的振子,在文献[7-9]借助复变量替换的方法研究了受外加激励系统时刚度对TET 的影响。更进一步的研究是当保守系统的线性振子受到一个初始能量或冲击载荷时,借助复变量平均法[10]确定振子间能量完全传递时非线性刚度与初始能量关系[11],其中还提出一种非保守系统的理想立方刚度设计方法以及阻尼设计方法[12]。但其前提是系统小阻尼、及某个已知刚度对应最优能量值等,限制条件较多,影响其工程应用。
不难发现,在文献[2-5]中对立方非线性刚度的设计都在理想的Hamilton系统前提下,而文献[2-11]讨论的均是理想的立方刚度的非线性形式。本文主要提出一种非保守系统NES立方非线性刚度的设计方法,根据线性振子的初始条件和必要的系统参数设计非线性刚度,使在该初始能量时吸振器的减振效率达到最高。基于该法,将NES的刚度形式推广至一类同时具有线性和立方非线性刚度的形式,讨论该类非线性吸振器刚度系数对TET的影响。为了使NES的减振效果最佳,文中最后还对非保守系统中组合刚度系数影响进行了讨论。
4结论
本文通过已有的耦合非线性振子的慢变近似模型,研究了理想立方刚度形式的非保守系统能量耗散与其对应保守系统能量之间关系。基于该关系提出一种立方刚度设计方法,并在两个算例中进行了验证,仿真结果验证了该方法的正确性。该方法可以直接应用于初始能量全部集中于线性振子的系统中去,实际应用较为方便。本文还研究了一类具有线性和立方非线性的组合刚度形式的NES振动抑制效果,得出了保守系统要实现能量完全传递时初始能量、质量比需要满足的条件;非保守系统分析时,确定了各组合刚度系数范围,并研究了组合刚度较之理想立方刚度的NES的优势。这些结论在文中后面的数值仿真都得到了验证。
参考文献:
[1]Al-Shudeifat M A. Highly efficient nonlinear energy sink[J]. Nonlinear Dynamics,2014, 76: 1 905—1 920.
[2]龚宪生, 谢志江, 骆振黄, 等. 非线性隔振器阻尼特性研究[J]. 振动工程学报,2001, 03: 90—94.GONG Xiansheng, XIE Zhijiang, LUO Zhenhuang, et al. The characteristics of a nonlinear damper for vibration isolation[J]. Journal of Vibration Engineering, 2001, 03:90—94.
[3]Gendelman O V, Manevitch L I, Vakakis A F. Energy pumping in nonlinear mechanical oscillators,Part I: Dynamics of the underlying Hamiltonian systems[J]. Journal of Applied Mechanics, 2001, 68(1): 34—41.
[4]Vakakis F, Gendelman O V. Energy pumping in coupled mechanical oscillators, Part II: resonance capture[J]. Journal of Applied Mechanics, 2001, 68: 42—48.
[5]Gourdon E, Alexander N A, Taylor C A, et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results [J]. Journal of Sound and Vibration, 2007, 300: 522—551. [6]Awrejcewicz J, Petrov A G. Nonlinear oscillations of an elastic two-degrees-of-freedom pendulum[J]. Nonlinear Dynamics, 2007, 53: 19—30.
[7]Starosvetsky Y, Gendelman O V. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes[J]. Nonlinear Dynamics, 2008, 51(1/2): 31—46.
[8]Starosvetsky Y, Gendelman O V. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink II: optimization of a nonlinear vibration absorber[J]. Nonlinear Dynamics, 2008, 51(1/2): 47—57.
[9]Kerschen G, Lee Y S, Vakakis A F, et al. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[J]. SIAM Journal on Applied Mathematics, 2005, 66: 648—679.
[10]Manevitch L I.The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[J]. Nonlinear Dynamics, 2001, 25: 95—109.
[11]张也弛, 孔宪仁. 非线性吸振器的靶能量传递及参数设计[J]. 振动工程学报, 2011, 24(2):111—117.ZHANG Yechi, KONG Xianren. Targeted energy transfer and parameter design of a nonlinear vibration absorber[J]. Journal of Vibration Engineering, 2011, 24(2):111—117.
[12]Nguyen T A, Pernot. S. Design criteria for optimally tuned nonlinear energy sinks, Part I: transient regime[J]. Nonlinear Dynamics, 2012, 69: 1—19.
Abstract: Applying the cubic nonlinear energy sink (NES) to vibration suppression of structure, the best performance of vibration suppression can be obtained through proper choice and design of nonlinear stiffness. Based on the relationship of energy transfer and dissipation of non-conservative system, a method of nonlinear stiffness design is proposed to get the best performance of vibration suppression. According to the linear and cubic nonlinear stiffness, the feature of phase trajectories of conservative system is analyzed using the complex averaging method, and get the necessary condition of initial energy and mass ratio. The suppression effect of the stiffness of non-conservative system on linear system also is investigated, and the range of composite stiffness at the maximum dissipation efficiency is obtained based on the method proposed. The above analysis is verified by numerical simulations at last.
Key words: nonlinear energy sink; absorber; targeted energy transfer; energy dissipation; vibration suppression
关键词: 非线性能量阱; 吸振器; 定向能量传递; 能量耗散; 振动抑制
中图分类号: O322; O328 文献标志码: A 文章编号: 1004-4523(2015)05-0785-08
引 言
非线性能量阱(Nonlinear Energy Sink, NES)能够有效地增加吸振带宽,并大幅度提升减振效率。与传统动力减振器不同,NES的振动抑制机理为定向能量传递(Targeted Energy Transfer, TET),这使得应用非线性进行振动抑制成为可能。经过10余年发展,NES的研究从最初单自由度、保守系统逐步发展到非保守、受复杂载荷的减振器,并开始应用到工程结构中去。借助其高效的减振效率和优异振动抑制性能,NES 正朝着航天器部、组件的减振结构设计方向发展。
合理选择和设计NES参数是减振器设计的重要步骤之一[1-2]。耦合单自由度立方非线性振子的保守系统在文献[3-4]讨论了系统实现TET的可能性,在文献[5-6]中的试验也证明这个结论。对于耦合具有理想立方刚度形式的振子,在文献[7-9]借助复变量替换的方法研究了受外加激励系统时刚度对TET 的影响。更进一步的研究是当保守系统的线性振子受到一个初始能量或冲击载荷时,借助复变量平均法[10]确定振子间能量完全传递时非线性刚度与初始能量关系[11],其中还提出一种非保守系统的理想立方刚度设计方法以及阻尼设计方法[12]。但其前提是系统小阻尼、及某个已知刚度对应最优能量值等,限制条件较多,影响其工程应用。
不难发现,在文献[2-5]中对立方非线性刚度的设计都在理想的Hamilton系统前提下,而文献[2-11]讨论的均是理想的立方刚度的非线性形式。本文主要提出一种非保守系统NES立方非线性刚度的设计方法,根据线性振子的初始条件和必要的系统参数设计非线性刚度,使在该初始能量时吸振器的减振效率达到最高。基于该法,将NES的刚度形式推广至一类同时具有线性和立方非线性刚度的形式,讨论该类非线性吸振器刚度系数对TET的影响。为了使NES的减振效果最佳,文中最后还对非保守系统中组合刚度系数影响进行了讨论。
4结论
本文通过已有的耦合非线性振子的慢变近似模型,研究了理想立方刚度形式的非保守系统能量耗散与其对应保守系统能量之间关系。基于该关系提出一种立方刚度设计方法,并在两个算例中进行了验证,仿真结果验证了该方法的正确性。该方法可以直接应用于初始能量全部集中于线性振子的系统中去,实际应用较为方便。本文还研究了一类具有线性和立方非线性的组合刚度形式的NES振动抑制效果,得出了保守系统要实现能量完全传递时初始能量、质量比需要满足的条件;非保守系统分析时,确定了各组合刚度系数范围,并研究了组合刚度较之理想立方刚度的NES的优势。这些结论在文中后面的数值仿真都得到了验证。
参考文献:
[1]Al-Shudeifat M A. Highly efficient nonlinear energy sink[J]. Nonlinear Dynamics,2014, 76: 1 905—1 920.
[2]龚宪生, 谢志江, 骆振黄, 等. 非线性隔振器阻尼特性研究[J]. 振动工程学报,2001, 03: 90—94.GONG Xiansheng, XIE Zhijiang, LUO Zhenhuang, et al. The characteristics of a nonlinear damper for vibration isolation[J]. Journal of Vibration Engineering, 2001, 03:90—94.
[3]Gendelman O V, Manevitch L I, Vakakis A F. Energy pumping in nonlinear mechanical oscillators,Part I: Dynamics of the underlying Hamiltonian systems[J]. Journal of Applied Mechanics, 2001, 68(1): 34—41.
[4]Vakakis F, Gendelman O V. Energy pumping in coupled mechanical oscillators, Part II: resonance capture[J]. Journal of Applied Mechanics, 2001, 68: 42—48.
[5]Gourdon E, Alexander N A, Taylor C A, et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results [J]. Journal of Sound and Vibration, 2007, 300: 522—551. [6]Awrejcewicz J, Petrov A G. Nonlinear oscillations of an elastic two-degrees-of-freedom pendulum[J]. Nonlinear Dynamics, 2007, 53: 19—30.
[7]Starosvetsky Y, Gendelman O V. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes[J]. Nonlinear Dynamics, 2008, 51(1/2): 31—46.
[8]Starosvetsky Y, Gendelman O V. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink II: optimization of a nonlinear vibration absorber[J]. Nonlinear Dynamics, 2008, 51(1/2): 47—57.
[9]Kerschen G, Lee Y S, Vakakis A F, et al. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[J]. SIAM Journal on Applied Mathematics, 2005, 66: 648—679.
[10]Manevitch L I.The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[J]. Nonlinear Dynamics, 2001, 25: 95—109.
[11]张也弛, 孔宪仁. 非线性吸振器的靶能量传递及参数设计[J]. 振动工程学报, 2011, 24(2):111—117.ZHANG Yechi, KONG Xianren. Targeted energy transfer and parameter design of a nonlinear vibration absorber[J]. Journal of Vibration Engineering, 2011, 24(2):111—117.
[12]Nguyen T A, Pernot. S. Design criteria for optimally tuned nonlinear energy sinks, Part I: transient regime[J]. Nonlinear Dynamics, 2012, 69: 1—19.
Abstract: Applying the cubic nonlinear energy sink (NES) to vibration suppression of structure, the best performance of vibration suppression can be obtained through proper choice and design of nonlinear stiffness. Based on the relationship of energy transfer and dissipation of non-conservative system, a method of nonlinear stiffness design is proposed to get the best performance of vibration suppression. According to the linear and cubic nonlinear stiffness, the feature of phase trajectories of conservative system is analyzed using the complex averaging method, and get the necessary condition of initial energy and mass ratio. The suppression effect of the stiffness of non-conservative system on linear system also is investigated, and the range of composite stiffness at the maximum dissipation efficiency is obtained based on the method proposed. The above analysis is verified by numerical simulations at last.
Key words: nonlinear energy sink; absorber; targeted energy transfer; energy dissipation; vibration suppression