论文部分内容阅读
超声波测风仪因其结构坚固,维修成本低等优点,在气象、生活及农业等领域有着广泛应用。但由于其结构特点造成的阴影效应,会导致其风速测量精度下降,是当前测风领域中不可忽视的问题。针对该问题,提出一种基于Fluent软件以及LSTM长短期记忆神经网络的超声波阴影效应的补偿算法,对不同风速风向以及不同温度下的阴影效应进行补偿。利用Fluent仿真得到样本数据完成LSTM预测模型训练;基于Fluent仿真数据对SVR和MLR等模型与LSTM模型对超声波测风仪阴影效应进行对比实验,验证LSTM算法模型的有效性及优越性;