基于卷积神经网络的回环检测算法

来源 :现代电子技术 | 被引量 : 0次 | 上传用户:yuekinger
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
回环检测是视觉SLAM中的一个重要模块,成功检测出回环能够有效减少环境地图生成过程中的累积误差.针对传统方法主要利用人工设计特征,具有对光照变化非常敏感等问题,将深度学习算法运用于回环检测中,提出一种基于卷积神经网络的回环检测算法.利用预训练的卷积神经网络模型VGG16提取图像卷积特征,选取网络末端的池化层作为图像的全局特征表示,并通过感知哈希算法判断特征相似性,验证回环.从准确性和运算时间上在New college数据集上评估该算法的性能.实验结果表明,相对于传统算法,提出的算法有着更高的准确度和速率,准确度提高了27.9%,而特征提取时间减少了68.8%.证明了深度卷积神经网络对回环检测的有效性,能够更好地消除视觉SLAM系统的累积误差,同时具有更高的实时性.
其他文献
为了满足半导体激光器(LD)对电流源高稳定性、低噪声的性能要求,文中基于负反馈原理设计一种可调节低噪声恒流源电路.该电路使用带隙基准电压源AD780BN提供低噪声、低温漂的基准电压,配合多路复用器ADG1606的选择功能,由低噪声运放LT1677构成的负反馈恒流驱动电路通过JFET将电压转换成电流,经过JFET和BJT构成的调整网络输出稳定的电流,实现了稳定的多电流输出.实际电路测试结果表明:该恒流源电路在3.8~5.5 V的输入电压范围内,输出电流稳定度在0.007%~0.029%之间;在电流调控模块控