论文部分内容阅读
Surface-modified poly(butadiene)urethane (PBTU) films with silk fibroin (SF) were prepared by simple chemical method under the normal temperature. The physical properties and biological behaviour of the SF-modified PBTU film were evaluated. The results showed that the SF-modified PBTU films kept the tenacity and pliability very well, and could overcome rigid and brittle weaks of silk fibroin films. The morphology of SF in the PBTU film was dendritic aggregations, and the water-contact angle measurement indicated that the surface hydrophilicity of modified films was apparently enhanced. The biocompatibility of PBTU films was improved due to the change of surface components. The degree of platelet adhesion and the cell viability of rat embryo dermal fibroblasts seeded on PBTU films, SF films, and SF-modified PBTU films were measured by counting platelets before and after they contacted the films and MTT assay, respectively. The results indicated that platelet adhesion resistance and cell viability on the modified film were greatly superior to those on the PBTU film and the compound interface had good stability in the air.
The physical properties and biological behavior of the SF-modified PBTU film were evaluated. The results showed that the SF-modified PBTU films kept the tenacity and pliability very well, and could overcome rigid and brittle weaks of silk fibroin films. The morphology of SF in the PBTU film was dendritic aggregations, and the water-contact angle measurement indicated that the surface hydrophilicity of The results of modified films was apparently enhanced. The biocompatibility of PBTU films was improved due to the change of surface components. The degree of platelet adhesion and the cell viability of rat embryo dermal fibroblasts seeded on PBTU films, SF films, and SF-modified PBTU films were measured by counting platelets before and after they contacted the films and MTT assay, respectively. The results indicated that platelet adhesion resistance and cell viability on the modified film were greatly superior to those on the PBTU film and the compound interface had good stability in the air.