论文部分内容阅读
针对单样本人脸识别问题,提出一种基于通用学习框架的人脸识别方法。以大量的通用样本与各个单样本按一定比例叠加的方式,增加每个类的训练样本总数,有效地运用了2DPCA方法进行特征抽取,将所有样本投影到特征子空间,再根据最大隶属度原则完成人脸识别,明显提高了识别率。该方法的有效性分别在ORL及FERET人脸数据库上得到了验证。