论文部分内容阅读
针对实际交通系统时变复杂和变化的不确定性所带来的交通流量非线性和强干扰性的特征,首先应用小波分析方法,对原始交通数据进行了消噪处理,使消噪后的数据更能反映交通流的本质及变化规律;然后采用自回归求和滑动平均(ARIMA)和支持向量机(SVM)的结合预测模型对交通流进行了预测,最后用实测交通数据进行了验证分析,得到了两个结论:一是组合预测模型比单个预测模型的预测精度高;二是小波分析消噪后的组合预测模型比没有消噪的组合预测模型预测精度高。结果表明消噪后的组合预测模型具有较高的预测精度,可用于交通流的实时动态预测。