论文部分内容阅读
采用衡山白果地区石膏矿山的11个评价指标,综合运用粗糙集和神经网络理论,构建了基于粗糙集-神经网络(RS-ANN)的矿山地质环境影响评价模型,对RSES软件约简的数据和无约简的数据采用EasyNN-plus软件进行预测评价。神经网络模型的输入属性为8个,而粗糙集-神经网络模型的输入属性为6个,训练样本均为13个,预测样本均为4个,前者的平均预测精度为1.85%~24.86%,后者为1.23%~15.28%。研究发现,粗糙集在保留关键信息的前提下可有效地对数据表进行约简,约简后的神经网络预测结果与实际