论文部分内容阅读
本文考虑一类二阶退化半线性椭圆型方程边值问题.由椭圆正则化方法建立能量不等式,利用紧性推理,Banach-Saks定理,弱解与强解一致性,解常微分方程,椭圆型方程正则性定理,迭代方法,极值原理和Fredholm-Riesz-Schauder理论,可得相应线性问题适定性及解的高阶正则性;再由Moser引理和Banach不动点定理可得半线性问题解的存在性.这类问题与几何中无穷小等距形变刚性问题密切相关,其高阶正则性解的存在性对几何应用尤为重要.