论文部分内容阅读
分析学习率和训练精度对BP神经网络训练最大次数、收敛时间和话务量预测精度的影响;根据呼叫中心历史话务量数据的日变化特点,提出并验证采用分时间段多次调用BP神经网络模型的方法比整体预测所得话务量预测结果精度更高;基于话务量预测结果,使用Erlang-C公式进行坐席数预测,结合呼叫中心的典型班次、设定的服务水平等参数进行坐席数曲线拟合,得到每个典型班次对应的话务员数量;开发呼叫中心智能排班系统,通过合理的排班实现大型呼叫中心资源的合理配置。