,MeNA, Controlled by Reversible Methylation of Nicotinate, Is an NAD Precursor that Undergoes Long-D

来源 :分子植物(英文版) | 被引量 : 0次 | 上传用户:shang66
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Nicotinamide adenine dinucleotide (NAD) biosynthesis,including synthesis from aspartate via the de novo pathway and from nicotinate (NA) via the Preiss-Handler pathway,is conserved in land plants.Diverse species of NA conjugates,which are mainly involved in NA detoxification,were also found in all tested land plants.Among these conjugates,MeNA (NA methyl ester) has been widely detected in angiosperm plants,although its physiological function and the underlying mechanism for its production in planta remain largely unknown.Here,we show that MeNA is an NAD precursor undergoing more efficient long-distance transport between organs than NA and nicotinamide in Arabidopsis.We found that Arabidopsis has one methyltransferase (designated AtNaMT1) capable of catalyzing carboxyl methylation of NA to yield MeNA and one methyl esterase (MES2) predominantly hydrolyzing MeNA back to NA.We further uncovered that the transfer of [14C]MeNA from the root to leaf was significantly increased in both MES2 knockdown and NaMT1-overexpressing lines,suggesting that both NaMT1 and MES2 fine-tune the long-distance transport of MeNA,which is ultimately utilized for NAD production.Abiotic stress (salt,abscisic acid,and mannitol)treatments,which are known to exacerbate NAD degradation,induce the expression of NaMT1 but suppress MES2 expression,suggesting that MeNA may play a role in stress adaption.Collectively,our study indicates that reversible methylation of NA controls the biosynthesis of MeNA in Arabidopsis,which presumably functions as a detoxification form of free NA for efficient long-distance transport and eventually NAD production especially under abiotic stress,providing new insights into the relationship between NAD biosynthesis and NA conjugation in plants.
其他文献
土壤侵蚀退化是当今人类面临的最大挑战之一.加强植被建设是防治土壤侵蚀退化的有效手段和重要措施.提高土壤质量是退化生态系统恢复与重建的基本目标之一.因此,深入研究水土
【目的】膜下滴灌技术具有明显的节水和增产效益。但是膜下滴灌水稻在幼苗期容易出现叶片缺铁黄化现象,严重时甚至出现幼苗死亡现象,缺铁黄化现象限制了水稻膜下滴灌技术推广应用。本试验针对膜下滴灌水稻幼苗期缺铁失绿的问题,研究膜下滴灌水稻铁营养效率基因型差异,不同耐缺铁型水稻品种铁营养的生理特征以及干旱胁迫对其的影响,为膜下滴灌耐缺铁水稻品种的筛选和培育提供理论依据。【方法】试验于2015年-2016年在新
期刊
@@
改革开放以来,我国城市化进程不断加快,农业结构不断优化、农村经济快速发展、农民收入稳步增加,同时人口膨胀、交通拥堵、雾霾天气、资源紧张等“城市病”在各城市日益显现,传统
随着畜牧养殖业的集约化发展,兽用抗生素开始大量使用,导致动物肠道内耐药菌大量滋生,抗生素抗性基因十分丰富,并随动物粪便排出体外,目前国际学术界已逐渐认识到,抗生素抗性
N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes,including the dicot modelArabidopsis thal
中国化工430亿美元收购先正达 获美国批准  瑞士先正达公司和中国化工集团8月22日共同宣布,美国外国投资委员会已批准这两家公司的收购协议。  今年2月,中国化工集团宣布以430亿美元收购种业巨头先正达公司,如果交易完成,将成为史上最大一笔中国资本海外并购项目。先正达22日在公司声明中称,预计此项并购将在今年年底前完成。除了美国监管机构的批准,该交易的完成还需要接受全球其它监管机构的反垄断审查。两
K+是作物体内最主要的渗透调节物质,含量高、分布广、移动性强、再利用率高,在作物——水分关系中有着重要的作用。许多研究表明,合理施用钾肥可改善作物体内钾素营养状况,提高水分利用率(WUE),增强抗旱性。目前人们普遍认为钾主要通过渗透调节作用增强作物的抗旱性,但对干旱条件下钾如何影响水分在作物体内进行重新分配,以及钾在作物体内进行重新分配的原因研究不多。本文以喜钾作物烟草(Nicotiana Tab
自古丝绸之路就是多元文化艺术交流的重要枢纽,时至当代,新疆依然承载着她对悠久文明的传承与创新。平面性作为当代油画流行的代名词,是适应国际倡导前卫绘画语言的需要,也是
In higher plants,the splicing of organelle-encoded mRNA involves a complex collaboration with nuclearencoded proteins.Pentatricopeptide repeat (PPR) proteins ha