论文部分内容阅读
螺栓是输电线路中广泛存在的紧固件,其缺陷图像具有类内差异性小、类间差异性大的特性。针对复杂度高且性能优秀的大模型在分析螺栓缺陷图像消耗大量计算资源的问题,将知识蒸馏技术引入到输电线路螺栓缺陷图像分类中,提出了一种基于动态监督知识蒸馏的输电线路螺栓缺陷图像分类方法:在网络输出层采用自适应加权方法,提高小模型学习螺栓缺陷标签的准确性;在网络隐藏层进行注意力转移,提高小模型螺栓特征的表达能力;将网络输出层的自适应加权方法与网络隐藏层的注意力转移机制相结合,以充分提高小模型的螺栓缺陷分类能力。最后通过自建螺