论文部分内容阅读
为解决柴油机故障诊断这一复杂问题,提出了一种基于智能互补融合的智能诊断方法.采用蚁群算法(ACA)对反映运行工况的特征参数进行属性约简,剔除不必要的属性.根据约简结果,建立了基于径向基函数(RBF)神经网络的故障诊断系统.网络的训练对比结果表明,基于蚁群算法的约简处理简化了输入神经网络的数据维数,提高了网络的训练效率和故障分类准确性.