论文部分内容阅读
【摘要】利用LeraySchauder不动点定理,研究了一类非线性项可变号的带一般微分算子的非线性带二阶周期边值问题正解的存在性.
【关键词】周期边值问题; 正解; LeraySchauder不动点定理
近年来,非线性常微分方程边值问题正解的研究备受众多学者关注,例如文献[1-8].由于周期现象的普遍存在,有很多作者更是运用LeraySchauder非线性抉择、Schauder不动点理论及锥上的不动点定理研究了二阶非线性周期边值问题正解的存在性.2009年,文献[2]利用Schauder不动点定理,考虑了问题(1)-(2)正解的存在性.
【参考文献】
[1]马如云.非线性微分方程非局部问题[M].北京:科学出版社,2004.
[2]LI X,ZHONG Z.periodic solutions for differential equation with a weak repulsive sigularity[J].Nonlinear.Analysis,2009,70:2395-2399.
[3]MA R.Existence of Positive solutions of a fourthorder boundary value problem[J].Comput.Appl.Math,2005,168:1219-1231.
[4]HENDERSON J,WANG H.Positive solutions for nonlinear eigenalue problems[J].Math.Anal.Appl,1997,208:252-259.
[5]JIANG D.On the existence of positive solutions to second order periodic BVPs[J].Acta.Math.Scientia.1998,18:31-35.
[6]GRAEF J,KONG L,WANG H.Existence,multiplicity,and dependence on a parameter for a periodic boundary value problems[J].Diff.Eqns.2008,245:1185-1197.
[7]XU J,MA R.Bifurcation from interval and positive solutions for second order periodic boundary value
problem[J].Comput.Appl.Math.2010,16:2463-2471.
[8]DANCER E.Global solution branches for positive mappings[J].Arch.Ration.Mech.Anal.1973,52:181-192.
【关键词】周期边值问题; 正解; LeraySchauder不动点定理
近年来,非线性常微分方程边值问题正解的研究备受众多学者关注,例如文献[1-8].由于周期现象的普遍存在,有很多作者更是运用LeraySchauder非线性抉择、Schauder不动点理论及锥上的不动点定理研究了二阶非线性周期边值问题正解的存在性.2009年,文献[2]利用Schauder不动点定理,考虑了问题(1)-(2)正解的存在性.
【参考文献】
[1]马如云.非线性微分方程非局部问题[M].北京:科学出版社,2004.
[2]LI X,ZHONG Z.periodic solutions for differential equation with a weak repulsive sigularity[J].Nonlinear.Analysis,2009,70:2395-2399.
[3]MA R.Existence of Positive solutions of a fourthorder boundary value problem[J].Comput.Appl.Math,2005,168:1219-1231.
[4]HENDERSON J,WANG H.Positive solutions for nonlinear eigenalue problems[J].Math.Anal.Appl,1997,208:252-259.
[5]JIANG D.On the existence of positive solutions to second order periodic BVPs[J].Acta.Math.Scientia.1998,18:31-35.
[6]GRAEF J,KONG L,WANG H.Existence,multiplicity,and dependence on a parameter for a periodic boundary value problems[J].Diff.Eqns.2008,245:1185-1197.
[7]XU J,MA R.Bifurcation from interval and positive solutions for second order periodic boundary value
problem[J].Comput.Appl.Math.2010,16:2463-2471.
[8]DANCER E.Global solution branches for positive mappings[J].Arch.Ration.Mech.Anal.1973,52:181-192.