论文部分内容阅读
利用遗传算法和传统优化方法的互补特性,采用混合优化方法求解包含离散和连续变量的无功优化问题。遗传算法的选择、交叉和变异操作仅作用于离散变量,对种群进行全局广度搜索,运用传统优化方法对种群个体中的连续变量进行优化使其移动到局部最优点上。为保证对连续变量的优化效果,选择了基于函数变换与广义逆的优化新算法。混合优化算法模型简单规范,遗传算法擅长处理离散变量和传统优化方法速度快、数值稳定性好的优势得到发扬。算法实用性和有效性通过算例及工程应用得到验证。