The Mutation Game, Coxeter-Dynkin Graphs, and Generalized Root Systems

来源 :代数集刊(英文版) | 被引量 : 0次 | 上传用户:dumpling
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We introduce the mutation game on a directed multigraph,which is dual to Mozes’ numbers game.This new game allows us to create geometric and combinatorial structure that allows generalization of root systems to more general graphs.We interpret Coxeter-Dynkin diagrams in this multigraph context and exhibit new geometric forms for the associated root systems.
其他文献
Let F,N,A and N2 denote the properties of being finite,nilpotent,abelian and nilpotent of classes at most 2,respectively.Firstly we consider the class of finite
In this paper,we find Haal-Shirshov type bases for free pre-Lie algebras.We show that Segal’s basis of a free pre-Lie algebra is a type of these bases.We give
For each finite group E,let (O)(E) be a binary relation on the set of all subgroups of E.If A and B are subgroups of a finite group G,then we say that the pair
Let R be a ring and let H be a subgroup of a finite group G.We consider the weak global dimension,cotorsion dimension and weak Gorenstein global dimension of th
《秃头歌女》是尤奈斯库的处女作,也是一部极为著名的荒诞戏剧。本文通过对情节的断裂处理,突出《秃头歌女》反传统的先锋基础;同时强调对语言的异化,从而加深戏剧的荒诞主题
本文首先介绍了黎族非物质文化遗产保护存在的问题,之后提出了关于黎族非物质文化遗产保护的相关对策,主要包括:明确工作职责,加强非物质文化遗产管理人才队伍建设;优化管理
We introduce a new class of semigroups called strict abundant semigroups,which are concordant semigroups and subdirect products of completely (J)*-simple abunda
Let D be an integral domain with quotient field K,(D) be the integral closure of D in K,and D[w]be the w-integral closure of D in K;so (D) (C) D[w],and equality
芒草被认为是一种极具发展前景的纤维素类能源植物。它是一类具根状茎的多年生C4植物,起源于亚洲的热带和亚热带地区,具有生物产量大、养分需求低、水分利用效率高和种植成本较
加快建立覆盖全社会的公共文化服务体系是维护好、实现好、发展好人民群众基本文化权益的主要途径,文化馆要让更多的群众享受政府提供的公共文化服务,为构建社会主义和谐社会