论文部分内容阅读
以入侵检测系统中的分类器设计为例,研究分类器的训练样本构造问题。提出了一种适合样本分布不均匀、海量数据集的训练样本子集构造方法,首先通过保留边界样本,删除内部样本,对样本数量较多的类,进行选择样本;然后对样本数量较少的类构造虚拟样本。通过这两个过程得到的训练子集样本数量较少,且样本分布均匀。