论文部分内容阅读
提出一种神经网络与变结构融合的控制策略用于非线性机器人控制,该方案利用神经网络来自适应补偿不确定模型,并通过变结构控制器消除逼近误差.考虑到局部泛化网络的不足,根据其状态空间的划分,分别对3个区间采用神经网络与变结构的分级与集成控制.该方案能在控制阶段初期及网络逼近区域外使两种控制器共同起作用以保持系统的强鲁棒性,基于Lyapunov理论证明了闭环系统的全局稳定性.仿真结果进一步表明了该方法的优越性.