论文部分内容阅读
针对一类控制增益未知的多输入多输出(MIMO)非线性系统,提出了一种基于神经网络的鲁棒自适应动态面控制方法.利用动态面控制解决反推法的计算膨胀问题;同时在参数自适应律中引入S(Sigmoid)函数,动态调节神经网络的收敛速度,解决了自适应初始阶段的抖振现象.利用李亚普诺夫稳定性定理,证明了闭环系统所有信号最终有界,系统的跟踪误差最终收敛到有界紧集内.仿真结果表明了该方法的有效性.