舰艇冲击伤的预防

来源 :解放军健康 | 被引量 : 0次 | 上传用户:sunyulong378
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
舰艇冲击运动导致舰员的各种损伤称为舰艇冲击伤 ,它属于固体冲击伤。由于舰艇冲击运动的作用时间极短 ,加速度值很高 ,故对舰员的影响主要是造成组织器官的器质性损伤。舰艇冲击伤的主要特点是 :1 以骨和关节损伤为主。2 常有软组织和内脏器官(尤其是腹腔实质性器官 )的损伤 Ship strike movement led to a variety of crew damage called the ship impact injury, it belongs to the solid impact injury. Due to the extremely short duration of the impact of the warship movement and the high acceleration values, the main impact on the crew members is the organic damage of tissues and organs. The main features of the ship impact injuries are: 1, the main bone and joint damage. 2 often soft tissue and internal organs (especially abdominal perineal organs) damage
其他文献
自然单元法(Natural Element Method, NEM)是较近出现的一种求解偏微分方程的数值方法,它采用自然相邻节点插值,兼有无网格的特性和传统有限元的优点。由于NEM形函数为非多项式
会议
提出了基于复变量求导法的弹塑性边界元参数识别的一种新方法。针对非线性参数反演过程中,灵敏度计算困难的问题,利用复变量求导法,把隐式函数的求导过程转化为函数值的计算,进而
会议
本文基于薄板的稳定性理论,对挠度函数采用Hermite径向基函数(HRBF )进行插值,研究无网格Galerkin法在板屈曲问题中的应用HRBF方法利用挠度及其导数进行插值,具有C1连续性,而普通的
会议
采用径向积分边界单元法对多功能复合涂层结构进行热应力分析。首先使用加权余量法建立非线性热传导和热应力问题的边界域积分方程,然后用径向积分法将出现在积分方程中的域积
会议
利用边界元方法对各向异性材料热传导问题中的参数反演进行了研究。为了解决热传导过程等效积分方程中特有的区域积分项,利用径向积分法把该区域积分转化到边界上,建立了相应的
会议
本文给出了一个基于梯度塑性和线性互补模型的有限元-无网格耦合方法。利用在积分点上定义的离散塑性乘子值,采用基于移动最小二乘的无网格法插值近似假定塑性乘子场以计算积分
会议
边界层效应的数值分析是边界元法的难点之一,其实质是几乎奇异积分的精确计算。现有的处理几乎奇异积分的多数方法,特别是精确积分法,通常考虑的是线性几何单元。然而,多数工程问
会议
将滑动kriging插值方法与无网格局部Petrov-Galerkin法相结合,建立新的无网格法——基于滑动kriging插值的无网格局部Petrov-Galerkin法。将这种无网格法应用于弹性力学问题,并
会议
金属泡沫由于具有较高导热系数的骨架,较好的通透性以及高比表面积,因此在具有较高的比刚度和比强度之外,其本身还是良好的换热介质。因此,研究强迫对流下金属泡沫材料的换热性能
会议
本文实验测试了孔隙率为0.92,孔密度不同的三种通孔铝泡沫热沉在轴流风扇冲击射流下的整体热阻、表面温差等性能表征参数,并与传统翅片式热沉的相应结果进行了比较分析。结果
会议