论文部分内容阅读
在目标跟踪领域,粒子滤波技术有处理非线性非高斯问题的优势,但是标准粒子滤波在利用重采样方法解决退化现象时,会产生粒子贫化现象,导致滤波精度不稳定。针对这个问题,利用融合了模拟退火高斯扰动的蝙蝠算法对粒子滤波进行优化改进。该算法将粒子表征为蝙蝠个体,蝙蝠种群通过调节蝙蝠个体的频率、响度和脉冲发射率,伴随当前最优蝙蝠个体在目标图像区域进行搜索,并且可以对全局搜索和局部搜索进行动态决策,从而提高蝙蝠个体整体的质量与合理的分布;融合的模拟退火高斯扰动策略可以增强算法跳出局部最优的能力。为了验证该算法的优化性